Skip to main content
Log in

Untersuchungen zum Proteinstoffwechsel des Wildtyps und der Letalmutante (ltr) von Drosophila melanogaster

Studies on protein metabolism in the wildtype and the lethal mutant “ltr” of drosophila melanogaster

  • Published:
Zeitschrift für vergleichende Physiologie Aims and scope Submit manuscript

Summary

  1. 1.

    Comparative studies on the protein metabolism in larvae of different developmental stages of the wild-type (+/+) and the lethal mutant “lethal-translucida” (ltr; 3, 20.7 ±0.8) of Drosophila melanogaster have been carried out. These included the changes of wet weight, hemolymph volume, content of hemolymph proteins, activity of protein synthesis of the fat body in vitro and protease activity of hemolymph and fat body.

  2. 2.

    The wet weight of wild-type larvae doubles from the third to the fourth day of age. During the same period there is a threefold increase in the lethals. The wet weight of the ltr-fat body is, however, only 33 % of that of the normals.

  3. 3.

    The concentration of hemolymph proteins in the wildtype larvae increases from 2.6% at 72 hrs of age to 6.9% at 96 hrs, whereas in the lethals the corresponding value is only 0.7%. Nevertheless, their total protein content of hemolymph per larva amounts to 78% of the wild-type value since the lethal individuals contain about eight times more hemolymph than the normals.

  4. 4.

    The in vitro experiments with fat body of young wildtype larvae showed a high incorporation rate of 14C-valine into proteins, which decreases rapidly as development proceeds.

  5. 5.

    The fat body of the ltr -homozygotes aged 90 to 130 hrs incorporates approximately the same amount of valine into proteins as the fat body of a 65hrs-old-wild-type larva. Even at the end of the larval period there is no decrease in the incorporation rate.

  6. 6.

    The fat body of both genotypes releases proteins synthesized in vitro into the incubation medium. Based on their electrophoretic mobility in starch and polyacrylamide gel some of them have been identified as hemolymph proteins.

  7. 7.

    The young wild-type larvae show a high incorporation rate of injected 14C-valine into proteins of the fat body, hemolymph and other tissues.

  8. 8.

    The old lethal larvae are capable of replacing within 24 hrs most of the hemolymph lost by puncture. This restituted hemolymph has again a protein content of 0.7%.

  9. 9.

    In lethals the protease activity of hemolymph is 7.7 times higher than that in wild-type larvae. The corresponding enzyme activity is four times higher for the fat body.

  10. 10.

    The present results demonstrated that the abnormal protein metabolism in the ltr-lethals is characterized by a high rate of protein synthesis as well as a rapid protein degradation. The possibility that this abnormality is causally related to some failure in the osmoregulation of the mutant larvae is suggested.

Zusammenfassung

  1. 1.

    Es wurden bei Larven des Wildtyps und der Letalmutante „letal-translucida“ (ltr; 3, 20,7 ±0,8) von Drosophila melanogaster in verschiedenen Entwicklungsstadien die Veränderungen folgender Größen untersucht: Frischgewicht, Hämolymphvolumen, Blutproteingehalt, Proteinsynthese-Aktivität des Fettkörpers in vitro und Proteasenaktivität von Blut und Fettkörper.

  2. 2.

    Das Frischgewicht der Normallarven verdoppelt sich im Zeitabschnitt 72–96 Std. Die Letallarven erreichen vor der Verpuppung ein 3 mal höheres Frischgewicht als die Normalen. Dagegen beträgt das Frischgewicht des ltr-Fettkörpers in diesem Stadium nur 33% des Normal-Gewichtes.

  3. 3.

    Der Gehalt an Blutproteinen steigt bei Normallarven von 2,6% (72 h) auf 6,9% (96 h). Bei verpuppungsreifen Letallarven enthält das Blut nur 0,7% Eiweiße. Pro Larve berechnet, ergibt dies 78% des totalen Blutproteingehaltes der Normalen, da die Letalen ein 8 mal größeres Blutvolumen haben.

  4. 4.

    In vitro Versuche mit Fettkörper junger Normallarven zeigen einen hohen Einbau von 14C-Valin in die Proteine, dann folgt bis zur Verpuppung eine starke Abnahme des Einbaues.

  5. 5.

    Der Fettkörper von ltr-Homozygoten (90–130 h) baut ungefähr gleichviel Valin in Proteine ein wie ein 65stündiger Normalfettkörper und zeigt keine Abnahme der Einbauleistung gegen das Ende der Larvalperiode.

  6. 6.

    Der Fettkörper beider Genotypen gibt in vitro gebildete Proteine ins Inkubationsmedium ab, die an Hand der elektrophoretischen Beweglichkeit zum Teil als Blutproteine identifiziert werden können.

  7. 7.

    Junge Normallarven zeigen einen höheren Einbau von injiziertem 14C-Valin in die Proteine des Fettkörpers, des Blutes und der übrigen Gewebe.

  8. 8.

    Alte Letallarven können das durch Punktieren verlorene Blut innerhalb 24 Std weitgehend ersetzen, der Proteingehalt der Ersatzhämolymphe beträgt wieder 0,7%.

  9. 9.

    Gegenüber Normalen ist bei den Letalen die Proteasenaktivität im Blut 7,7-, im Fettkörper-Homogenat 4 mal höher (pro mg Protein der Enzymprobe).

  10. 10.

    Nach den vorliegenden Resultaten besteht die Abnormität im Proteinstoffwechsel der ltr-Letalen darin, daß in großem Maße Proteine auf- und abgebaut werden. Es wird auf einen möglichen Zusammenhang zwischen dieser Störung und einem Defekt in der Osmoregulation hingewiesen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literatur

  • Beadle, L. C., and J. Shaw: The retention of salt and the regulation of the non-protein nitrogen fraction in the blood of the aquatic larva, Sialis lutaria. J. exp. Biol. 27, 96–109 (1950).

    Google Scholar 

  • Charney, J., and R. M. Tomarelli: A colorimetric method for the determination of proteolytic activity of duodenal juice. J. biol. Chem. 171, 501–505 (1947).

    Google Scholar 

  • Chen, P. S.: Elektrophoretische Bestimmung des Proteingehaltes im Blut normaler und letaler (ltr) Larven von Drosophila melanogaster. Rev. suisse Zool. 63, 216–229 (1956).

    Google Scholar 

  • —: Trennung der Blutproteine von Drosophila- und Culex-Larven mittels Stärke-Gel-Elektrophorese. Rev. suisse Zool. 66, 280–289 (1959).

    Google Scholar 

  • —: Amino acid and protein metabolism in insect development. In: Advances in Insect Physiology (J. W. L. Beament, J. E. Treherne, V. B. Wigglesworth, eds.), vol. 3, p. 53–132. London and New York: Academic Press 1966.

    Google Scholar 

  • —: Separation of serum proteins in different amphibian species by polyacrylamide gel electrophoresis. Experientia (Basel) 23, 1–8 (1967).

    Google Scholar 

  • Chen, P. S., and L. Levenbook: Studies on the haemolymph proteins of the blowfly Phormia regina —II. Synthesis and breakdown as revealed by isotopic labelling. J. Insect Physiol. 12, 1611–1627 (1966).

    Google Scholar 

  • Coles, G. C.: Some effects of decapitation on metabolism in Rhodnius prolixus Stål. Nature (Lond.) 203, 323 (1964).

    Google Scholar 

  • —: Haemolymph proteins and yolk formation in Rhodnius prolixus Stål. J. exp. Biol. 43, 425–431 (1965a).

    Google Scholar 

  • —: The haemolymph and moulting in Rhodnius prolixus Stål. J. Insect Physiol. 11, 1317–1323 (1965b).

    Google Scholar 

  • —: Studies on the hormonal control of metabolism in Rhodnius prolixus Stål. — II. The fifthstage insect. J. Insect. Physiol. 12, 1029–1037 (1966).

    Google Scholar 

  • Davis, B. J.: Disc electrophoresis. — II. Method and application to human serum proteins. Ann. N. Y. Sci. 121, 404–427 (1964).

    Google Scholar 

  • Doane, W. W.: Developmental physiology of the mutant fes (2) adp of Drosophila melanogaster. J. exp. Zool. I. 145, 1–22 (1960); II. 145, 23–41; III. 146, 275–298 (1960).

    Google Scholar 

  • Eggstein, M., u. F. H. Kreutz: Vergleichende Untersuchungen zur quantitativen Eiweißbestimmung im Liquor und eiweißarmen Lösungen. Klin. Wschr. 33, 879–884 (1955).

    Google Scholar 

  • Ephrussi, B., and G. W. Beadle: A technique of transplantation for Drosophila. Amer. Nat. 70, 218–225 (1936).

    Google Scholar 

  • Falta, W.: Über die Auswertung von Papierelektrophoresestreifen und ein hierfür bestimmtes einfaches Gerät zum Pulfrich-Photometer. Jena. Jb. 2, 212–246 (1955).

    Google Scholar 

  • Faulkner, P., and B. Bheemeswar: Studies on the biosynthesis of proteins in the silkworm, Bombyx mori L. Biochem. J. 76, 71–78 (1960).

    Google Scholar 

  • Florkin, M., and Ch. Jeuniaux: Haemolymph: Composition. In: The physiology of insecta (M. Rockstein, ed.). vol. 3, p. 110–148. London and New York: Academic Press 1964.

    Google Scholar 

  • Geiger, H. R., and K. H. Mitchell: Salivary gland function in phenol oxidase production in Drosophila melanogaster. J. Insect Physiol. 12, 747–754 (1966).

    Google Scholar 

  • Gloor, H.: Biochemische Untersuchungen am Letalfaktor „letal-translucida“ (ltr) von Drosophila melanogaster. Rev. suisse Zool. 56, 281–285 (1949).

    Google Scholar 

  • Gornall, A. G., C. J. Bardawill, and M. M. David: Determination of serum proteins by means of the biuret reaction. J. biol. Chem. 177, 751–766 (1949).

    Google Scholar 

  • Grassmann, W., u. K. Hannig: Beiträge zur Methodik der papierelektrophoretischen Serumanalyse. Klin. Wschr. 32, 838–846 (1954).

    Google Scholar 

  • Hadorn, E.: Gene action in growth and differentiation of lethal mutants of Drosophila. Sym. Soc. exp. Biol. 2, 177–195 (1948).

    Google Scholar 

  • —: Zur Entwicklungsphysiologie der Mutante letal-translucida (ltr) von Drosophila melanogaster. Rev. suisse Zool. 60, 271–280 (1949).

    Google Scholar 

  • —: Developmental genetics and lethal factors. London: Methuen 1961.

    Google Scholar 

  • —, and H. K. Mitchell: Properties of mutants of Drosophila melanogaster and changes during development as revealed by paper chromatography. Proc. nat. Acad. Sci. (Wash.) 37, 650–665 (1951).

    Google Scholar 

  • —, u. E. Stumm-Zollinger: Untersuchungen zur biochemischen Auswirkung der Mutante „letal-translucida“ (ltr) von Drosophila melanogaster. Rev. suisse Zool. 60, 506–516 (1953).

    Google Scholar 

  • Hill, L.: The incorporation of 14C-Glycine into the proteins of the fat body of the desert locust during ovarian development. J. Insect Physiol. 11, 1605–1615 (1965).

    Google Scholar 

  • Jenny, E., A. Hicklin u. F. Leuthardt: „In vitro“-Einbau radioaktiver Aminosäuren in die Proteine von Drosophila-Puppen. Helv. chim. Acta 45, 2014–2020 (1962).

    Google Scholar 

  • Kilby, B. A.: The biochemistry of the insect fat body. In: Advances in Insect Physiology (J. W. L. Beament, J. E. Treherne, V. B. Wigglesworth, eds.), vol. 1, p. 111–174. London and New York: Academic Press 1963.

    Google Scholar 

  • —: Intermediary metabolism and the insect fat body. In: Aspects of insect biochemistry (T. W. Goodwin, ed.). Biochem. Soc. Symp. 25, London and New York: Academic Press 1965.

    Google Scholar 

  • Laufer, H.: Studies of changes in enzymatic activities of blood proteins in the developing silk moth. Proc. Intern. Congr. Entomol. 11th Vienna III, p. 194–200 (1960a).

  • —: Blood proteins in insect development. Ann. N.Y. Acad. Sci. 89, 490–515 (1960b).

    Google Scholar 

  • Lowry, O. H., N. J. Rosebrough, A. L. Farr, and R. J. Randall: Protein measurement with the folin phenol reagent. J. biol. Chem. 193, 265–275 (1951).

    Google Scholar 

  • Maluf, N.S.R.: The blood of arthropods. Quart. Rev. Biol. 14, 149–191 (1939).

    Google Scholar 

  • Metzenberg, R. L.: Alteration in the level of phosphorus-containing compounds in the Drosophila mutant „lethal-translucida“. Z. Vererbungsl. 93, 366–370 (1962).

    Google Scholar 

  • Novak, V. J. A.: Insect Hormones. London: Methuen 1966.

    Google Scholar 

  • Orr, C. W. M.: The influence of nutritional and hormonal factors on the chemistry of the fat body, blood, and ovaries of the blowfly Phormia regina Meig. J. Insect Physiol. 10, 103–119 (1964).

    Google Scholar 

  • Patterson, E. K., M. E. Dackermann, and J. Schultz: Peptidase activities of extracts of salivary glands of Drosophila melanogaster. J. gen. Physiol. 32, 607–622 (1949).

    Google Scholar 

  • Pinamonti, S., A. Petris, and G. Colombo: Nucleic acids, proteins and tryptophan pyrrolase activity of the fat body of Schistocerca gregaria Försk. (Orthoptera) during ovarian maturation. J. Insect Physiol. 12, 1403–1410 (1966).

    Google Scholar 

  • Price, G. M.: The in vitro incorporation of (U-14C) valine into fat body protein of the larva of the blowfly, Calliphora erythrocephala. J. Insect Physiol. 12, 731–740 (1966).

    Google Scholar 

  • —, and T. Bosman: The electrophoretic separation of proteins isolated from the larva of the blowfly, Calliphora erythrocephala. J. Insect Physiol. 12, 741–745 (1966).

    Google Scholar 

  • Schneider, I.: Differentiation of larval Drosophila eye-antennal discs in vitro. J. exp. Zool. 156, 91–100 (1964).

    Google Scholar 

  • Shigematsu, H.: Synthesis of blood protein by the fat body in the silkworm, Bombyx mori L. Nature (Lond.) 182, 880–882 (1958).

    Google Scholar 

  • —: Protein metabolism in the fat body of the silkworm, Bombyx mori L. Bull. seric. Exp. Stn. Jap. 16, 141–170 (1960).

    Google Scholar 

  • Slama, K.: Hormonal control of haemolymph protein concentration in the adults of Pyrrhocoris apterus L. (Hemiptera). J. Insect Physiol. 10, 773–782 (1964).

    Google Scholar 

  • Smithies, O.: Zone electrophoresis in starch gels: group variations in the serum proteins of normal human adults. Biochem. J. 61, 629–641 (1955).

    Google Scholar 

  • Stevenson, E., and G. R. Wyatt: The metabolism of silkworm tissues. — I. Incorporation of leucine into protein. Arch. Biochem. 99, 65–71 (1962).

    Google Scholar 

  • Stumm-Zollinger, E.: Vergleichende Analyse der Aminosäuren und Peptide in der Hämolymphe des Wildtyps und der Mutante „letal-translucida“ (ltr) von Drosophila melanogaster. Z. Vererbungsl. 86, 126–133 (1954).

    Google Scholar 

  • Telfer, H. W. and C. M. Williams: The effect of diapause, development and injury on the incorporation of radioactive glycine into the blood proteins of the Cecropia silkworm. J. Insect Physiol. 5, 61–72 (1960).

    Google Scholar 

  • Tomarelli, R. M., J. Charney, and M. Lord Harding: The use of azoalbumin as a substrate in the colorimetric determination of peptic and tryptic activity. J. Lab. clin. Med. 34, 428–433 (1949).

    Google Scholar 

  • Urich, K.: Mitteldarmdrüsen und Insektenfettkörper als Zentralorgane des Stoffwechsels. Ergebn. Biol. 24, 155–190 (1961).

    Google Scholar 

  • Vesselinowitch, S. D.: A simple method for making starchgel electrophoretic strips transparent. Nature (Lond.) 182, 665 (1958).

    Google Scholar 

  • Waldner-Stiefelmeier, R. D.: Untersuchungen über die Proteasen im Wildtyp und in den Letalmutanten (lme und ltr) von Drosophila melanogaster. Z. vergl. Physiol. 56, 268–289 (1967).

    Google Scholar 

  • Weinmann, H. P.: Untersuchungen mit markierten Aminosäuren zum Proteinstoffwechsel normaler und letaler Genotypen von Drosophila melanogaster. Z. vergl. Physiol. 48, 429–461 (1964).

    Google Scholar 

  • Wunderly, Ch.: Die Papierelektrophorese: Methoden und Ergebnisse. Chimia 7, 145–160 (1953).

    Google Scholar 

  • — u. H. Gloor: Versuche zur Charakterisierung der larvalen Blutproteine normaler und letaler Genotypen von Drosophila mittels Papier-Elektrophorese. Protoplasma 42, 273–282 (1953).

    Google Scholar 

  • Wyss-Huber, M., u. M. Luescher: Ueber die Beeinflußbarkeit der Proteinsynthese in vitro im Fettkörper von Leucophaea maderae. Rev. suisse Zool. 73, 517–521 (1966).

    Google Scholar 

  • Yamafuji, K.: Biologie der Seide. In: Tabulae biologicae (W. Junk, C. Oppen-heimer, W. Weisbach, Hrsg.), Bd. 14, S. 36–50. Den Haag: Junk 1937.

    Google Scholar 

  • Young, R. W., and H. W. Fulhorst: Recovery of 35S radioactivity from protein-bearing polyacrylamide gel. Anal. Biochem. 11, 389–391 (1965).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rüegg, M.K. Untersuchungen zum Proteinstoffwechsel des Wildtyps und der Letalmutante (ltr) von Drosophila melanogaster. Z. Vergl. Physiol. 60, 275–307 (1968). https://doi.org/10.1007/BF00298603

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00298603

Navigation