Skip to main content
Log in

Phylogenic relationships of the amino acid sequences of prosome (proteasome, MCP) subunits

  • Original Paper
  • Published:
Molecular and General Genetics MGG Aims and scope Submit manuscript

Abstract

Prosomes [or proteasomes, Multi-Catalytic Proteinase (MCP)] are multisubunit protein complexes, found from archaebacteria to man, the structure of which (a 4-layer cylinder) is remarkably conserved. They were first observed as subcomplexes of untranslated mRNP, and then as a multicatalytic proteinase with several proteolytic activities. A number of sequences from subunits of these complexes are now available. Analysis of the sequences shows that these subunits are evolutionarily related, and reveals three highly conserved amino acid stretches. Based on a phylogenic approach, we propose to classify the sequenced subunits into 14 families, which fall into two superfamilies, of the α- and β-type. These data, together with several recently published observations, suggest that some subunits may be interchangeable within the complexes, which would thus constitute a population of heterogenous particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahn JY, Hong SO, Kwak KB, Kang SS, Tanaka K, Ichihara A, Ha DB, Chung CH (1991) Developmental regulation of proteolytic activities and subunit pattern of 20S proteasome in chick embryonic muscle. J Biol Chem 266:15746–15749

    Google Scholar 

  • Aki M, Tamura T, Tokunaga F, Iwanaga S, Kawamura Y, Shimbara N, Kagawa S, Tanaka K, Ichihara A (1992) cDNA cloning of rat proteasome subunit RC1, a homologue of RING10 located in the human MHC Class-II region. FEBS Lett 301:65–68

    Google Scholar 

  • Arcangeletti C, Olink-Coux M, Minisini R, Huesca M, Chezzi C, Scherrer K (1992) Patterns of cytodistribution of prosomal antigens on the vimentin and cytokeratin networks of monkey kidney cells. Eur J Cell Biol 59:464–476

    Google Scholar 

  • Basile GM, Aker M, Mortimer RK (1992) Mol Cell Biol 12:3235–3246

    Google Scholar 

  • Bey F, Silva-Pereira I, Coux O, Viegas-Pequignot E, Recillas Targa F, Nothwang HG, Dutrillaux B, Scherrer K (1993) The prosomal RNA-binding protein p27K is a member of the α-type human prosomal gene family. Mol Gen Genet 237:193–205

    Google Scholar 

  • Boes B, Hengel H, Ruppert T, Multhaup G, Koszinowski UH, Kloetzel PM (1994) Interferon γ stimulation modulates the proteolytic activity and cleavage site preference of 20S mouse proteasome. J Exp Med 179:901–909

    Google Scholar 

  • Briane D, Olink-Coux M, Vassy J, Oudar O, Huesca M, Scherrer K, Foucrier J (1992) Immunolocalization of a specific type of prosome close to the bile canaliculi in fetal and adult rat liver. Eur J Cell Biol 57:30–39

    Google Scholar 

  • Brouard N, Bleu C, Chateau M-T, Bureau J-P, Scherrer K (1995) Cell-internal and surface prosomes of the various human blood cells have different subunit composition. Blood: in press

  • Brown MG, Driscoll J, Monaco JJ (1991) Structural and serological similarity of MHC-linked LMP and proteasome (Multicatalytic Proteinase) complexes. Nature 353:355–357

    Google Scholar 

  • Coux O, Nothwang HG, Scherrer K, Bergsma-Schutter W, Arnberg AC, Timmins PA, Langowski J, Cohen-Addad CC (1992) Structure and RNA content of the prosomes. FEBS Lett 300:49–55

    Google Scholar 

  • Dahlmann B, Kopp F, Kuehn L, Niedel B, Pfeifer G, Hegerl R, Baumeister W (1989) The multicatalytic proteinase (prosome) is ubiquitous from eukaryotes to archaebacteria. FEBS Lett 251:125–131

    Google Scholar 

  • Dayhoff M (1978) Atlas of protein sequence and structure, vol 5, suppl 3. National Biomedical Research Foundation, Silver Spring, Md.

    Google Scholar 

  • DeMartino GN, Orth K, McCullough ML, Lee LW, Munn TZ, Moomaw CR, Dawson PA, Slaughter CA (1991) The primary structures of four subunits of the human, high-molecular-weight proteinase, macropain (proteasome), are distinct but homologous. Biochim Biophys Acta 1079:29–38

    Google Scholar 

  • Emori Y, Tsukahara T, Kawasaki H, Ishiura S, Sugita H, Suzuki K (1991) Molecular cloning and functional analysis of three subunits of yeast proteasome. Mol Cell Biol 11:344–353

    Google Scholar 

  • Foucrier J, Grand MC, Missorini S, Arcangeletti C, Scherrer K, Martelly I (1994) Dynamics of prosomal antigen cytodistribution during in vitro differentiation of skelettal muscle satellite cells. Cell Biol Intern 18:418

    Google Scholar 

  • Frentzel S, Graf U, Hammerling GJ, Kloetzel PM (1992) Isolation and characterization of the MHC linked beta-type proteasome subunit MC13 cDNA. FEBS Lett 302:121–125

    Google Scholar 

  • Friedman H, Goebel M, Snyder M (1992) A homologue of the proteasome-related RING10 gene is essential for yeast cell growth. Gene 122:203–206

    Google Scholar 

  • Fruh K, Yang Y, Arnold D, Chambers J, Wu L, Waters JB, Spies T, Peterson PA (1992) Alternative exon usage and processing of the major histocompatibility complex-encoded proteasome subunits. J Biol Chem 267:22131–22140

    Google Scholar 

  • Fujii G, Tashiro K, Emori Y, Saigo K, Tanaka K, Shiokawa K (1991) Deduced primary structure of a Xenopus proteasome subunit XC3 and expression of its mRNA during early development. Biochem Biophys Res Commun 178:1233–1239

    Google Scholar 

  • Fujiwara T, Tanaka K, Kumatori A, Shin S, Yoshimura T, Ichihara A, Tokunaga F, Aruga R, Iwanaga S, Kakizuka A, Nakanishi S (1989) Molecular cloning of cDNA for proteasome (multicatalytic proteinase complexes) from rat liver:primary structure of the largest component (C2) Biochemistry 28:7332–7340

    Google Scholar 

  • Fujiwara T, Tanaka K, Orino E, Yoshimura T, Kumatori A, Tamura T, Chung CH, Nakai T, Yamaguchi K, Shin S, Kakizuka A, Nakanishi S, Ichihara A (1990) Proteasomes are essential for yeast proliferation — cDNA cloning and gene disruption of 2 major subunits. J Biol Chem 265:16604–16613

    Google Scholar 

  • Gaczynska M, Rock KL, Goldberg AL (1993) Gamma-interferon and expression of MHC genes regulate peptide hydrolysis by proteasomes Nature 365:264–267

    Google Scholar 

  • Gaczynska M, Rock KL, Spies T, Goldberg AL (1994) Peptidase activities of proteasomes are differentially regulated by the MHC-encoded genes LMP2 and LMP7. Proc Natl Acad Sci USA, in press

  • Genetics Computer Group (1991) Program manual for the GCG (Wisconsin) package, Version 7, April 1991

  • Genschik P, Philipps G, Gigot C, Fleck J (1992) Cloning and sequence analysis of a cDNA clone from Arabidopsis thaliana homologous to a proteasome α subsunit from Drosophila. FEBS Lett 309:311–315

    Google Scholar 

  • Georgatsou E, Georgakopoulos T, Thireos G (1992) Molecular cloning of an essential yeast gene encoding a proteasomal subunit. FEBS Lett 299:39–43

    Google Scholar 

  • Glynne R, Powis SH, Beck S, Kelly A, Kerr LA, Trowsdale J (1991) A proteasome-related gene between the 2 ABC transporter loci in the Class-II region of the human MHC. Nature 353:357–360

    Google Scholar 

  • Goldberg AL (1992) The mechanism and functions of ATP-dependent proteases in bacterial and animal cells. Eur J Biochem 203:9–23

    Google Scholar 

  • Goldberg AL, Rock KL (1992) Proteolysis, proteasomes and antigen presentation. Nature 357:375–379

    Google Scholar 

  • Grand MC, Pinardi F, Gautron J, Chezzi C, Scherrer K, Foucrier J (1994) Intra-sarcomeric cytolocation of prosome antigens in vertebrate muscle. Cell Biol Intern 18:426

    Google Scholar 

  • Grossi de Sa MF, Martins de Sa C, Harper F, Olink-Coux M, Huesca M, Scherrer K (1988) The association of prosomes with some of the intermediate filament networks of the animal cell. J Cell Biol 107:1517–1530

    Google Scholar 

  • Grziwa A, Baumeister W, Dahlmann B, Kopp F (1991) Localization of subunits in proteasomes from Thermoplasma acidophilum by immunoelectron microscopy. FEBS Lett 290:186–190

    Google Scholar 

  • Haass C, Kloetzel PM (1989) The Drosophila proteasome undergoes changes in its subunit pattern during development. Exp Cell Res 180:243–252

    Google Scholar 

  • Haass C, Pesold HB, Multhaup G, Beyreuther K, Kloetzel PM (1989) The PROS-35 gene encodes the 35 Kd protein subunit of Drosophila melanogaster proteasome. EMBO J 8:2373–2379

    Google Scholar 

  • Haass C, Pesoldhurt B, Kloetzel PM (1990a) The Drosophila Pros-29 gene is a new member of the pros gene family. Nucleic Acids Res 18:4018

    Google Scholar 

  • Haass C, Pesoldhurt B, Multhaup G, Beyreuther K, Kloetzel PM (1990b) The Drosophila Pros-281 gene is a member of the proteasome gene family. Gene 90:235–241

    Google Scholar 

  • Haffter P, Fox TD (1991) Nucleotide sequence of PUP1 encoding a putative proteasome subunit in Saccharomyces cerevisiae. Nucleic Acids Res 19:5075–5075

    Google Scholar 

  • Heinemeyer W, Kleinschmidt JA, Saidowsky J, Escher C, Wolf DH (1991) Proteinase yscE, the yeast proteasome/multicatalytic-multifunctional proteinase — mutants unravel its function in stress induced proteolysis and uncover its necessity for cell survival. EMBO J 10:555–562

    Google Scholar 

  • Heinemeyer W, Gruhler A, Möhrle V, Mahe Y, Wolf DH (1993) PRE2, highly homologous to the human major histocompatibility complex-linked RING10 gene, codes for a yeast proteasome subunit necessary for chymotryptic activity and degradation of ubiquitinated proteins. J Biol Chem 268:5115–5120

    Google Scholar 

  • Hershko A, Ciechanover A (1992) The ubiquitin system for protein degradation. Annu Rev Biochem 61:761–807

    Google Scholar 

  • Hilt W, Enenkel C, Gruhler A, Singer T, Wolf DH (1993) The PRE4 gene codes for a subunit of the yeast proteasome necessary for peptidylglutamyl-peptide-hydrolyzing activity. Mutations link the proteasome to stress- and ubiquitin-dependent proteolysis. J Biol Chem 268:3479–3486

    Google Scholar 

  • Horsch A, Martins de Sa C, Dineva B, Spindler E, Schmid HP (1989) Prosomes discriminate between mRNA of adenovirus infected and uninfected HeLa cells. FEBS Lett 246:131–136

    Google Scholar 

  • Kelly A, Powis SH, Glynne R, Radley E, Beck S, Trowsdale J (1991) Second proteasome-related gene in the human MHC class II region. Nature 353:667–668

    Google Scholar 

  • Klein U, Gernold M, Kloetzel PM (1990) Cell-specific accumulation of Drosophila proteasomes (MCP) during early development. J Cell Biol 111:2275–2282

    Google Scholar 

  • Kloetzel PM, Frentzel S, Gernold M, Haass C, Klein U, Pesold-Hurt B, Seelig A (1991) The proteasome of Drosophila and features of the evolutionarily conserved PROS gene family. Biomed Biochim Acta 50:451–457

    Google Scholar 

  • Kopp F, Dahlmann B, Hendil KB (1993) Evidence indicating that the human proteasome is a complex dimer. J Mol Biol 229:1419

    Google Scholar 

  • Kumatori A, Tanaka K, Inamura N, Sone S, Ogura T, Matsumoto T, Tachikawa T, Shin S, Ichihara A (1990a) Abnormally high expression of proteasomes in human leukemic cells. Proc Natl Acad Sci USA 87:7071–7075

    Google Scholar 

  • Kumatori A, Tanaka K, Tamura T, Fujiwara T, Ichihara A, Tokunaga F, Onikura A, Iwanaga S (1990b) cDNA cloning and sequencing of component C9 of proteasomes from rat hepatoma cells. FEBS Lett 264:279–282

    Google Scholar 

  • Larsen F, Solheim J, Kristensen T, Kolsto AB, Prydz H (1993) A tight cluster of 5 unrelated human genes on chromosome 16822.1. Hum Mol Genet 2:1589–1595

    Google Scholar 

  • Lee DH, Tanaka K, Tamura T, Chung CH, Ichihara A (1992) PRS3 encoding an essential subunit of yeast proteasomes homologous to mammalian proteasome subunit C5. Biochem Biophys Res Commun 182:452–460

    Google Scholar 

  • Martinez CK, Monaco JJ (1991) Homology of proteasome subunits to a major histocompatibility complex-linked LMP gene. Nature 353:664–667

    Google Scholar 

  • Martins de Sa C, Grossi de Sa MF, Akhayat O, Broders F, Scherrer K, Horsch A, Schmid HP (1986) Prosomes: ubiquity and inter species structural variation. J Mol Biol 187:479–493

    Google Scholar 

  • Nishimura C, Tamura T, Akioka H, Tokunaga F, Tanaka K, Ichihara A (1993a) cDNA cloning of rat proteasome subunit RC10-II, assumed to be responsible for trypsin-like catalytic activity. FEBS Lett 336:462–466

    Google Scholar 

  • Nishimura C, Tamura T, Tokunaga F, Tanaka K, Ichihara A (1993b) cDNA cloning of rat proteasome subunit RC7-I, a homologue of yeast PRE1 essential for chymotrypsin-like activity. FEBS Lett 332:52–56

    Google Scholar 

  • Nothwang HG, Coux O, Bey F, Scherrer K (1992a) Disruption of prosomes by some bivalent metal ions results in the loss of their multicatalytic proteinase activity and cancels the nuclease resistance of prosomal RNA. Biochem J 287:733–739

    Google Scholar 

  • Nothwang HG, Coux O, Bey F, Scherrer K (1992b) Prosomes and their multicatalytic proteinase activity. Eur J Biochem 207:621–630

    Google Scholar 

  • Nothwang HG, Coux O, Keith G, Silva-Pereira I, Scherrer K (1992c) The major RNA in prosomes of HeLa cells and duck erythroblasts is tRNALs3. Nucleic Acids Res 20:1959–1965

    Google Scholar 

  • Olink-Coux M, Arcangeletti C, Pinardi F, Minisini R, Huesca M, Chezzi C, Scherrer K (1994) Cytolocation of prosome antigens on intermediate filament subnetworks of cytokeratin, vimentin and desmin type. J Cell Sci 107:353–366

    Google Scholar 

  • Olink-Coux M, Huesca M, Scherrer K (1992) Specific types of prosomes are associated to subnetworks of the intermediate filaments in PtKI cells. Eur J Cell Biol 59:148–159

    Google Scholar 

  • Orlowski M (1990) The multicatalytic proteinase complex, a major extralysosomal proteolytic system. Biochemistry 29:10289–10297

    Google Scholar 

  • Pal JK, Gounon P, Grossi de Sa MF, Scherrer K (1988) Distribution of prosome antigens changes as a function of embryonic development and tissue-type differentiation in Pleurodeles waltl. J Cell Sci 90:555–567

    Google Scholar 

  • Pal JK, Martins de Sa C, Gounon P, Grossi de Sa MF, Scherrer K (1994) Differential synthesis and cytolocalisation of prosomes in the chick embryo during development. Intern J Dev Biol 38: in press

  • Pühler G, Weinkauf S, Bachmann L, Muller S, Engel A, Hegerl R, Baumeister W (1992) Subunit stoichiometry and three-dimensional arrangement in proteasomes from Thermoplasma acidophilum. EMBO J 11:1607–1616

    Google Scholar 

  • Rivett AJ (1993) Proteasomes:multicatalytic proteinase complexes. Biochem J 291:1–10

    Google Scholar 

  • Robertson M (1991) Antigen processing — proteasomes in the pathway. Nature 353:300–301

    Google Scholar 

  • Saville KJ, Belote JM (1993) Identification of an essential gene, l(3)73Ai, with a dominant temperature-sensitive lethal allele, encoding a drosophila proteasome subunit. Proc Natl Acad Sci USA 90:8842–8846

    Google Scholar 

  • Schauer TM, Nesper M, Kehl M, Lottspeich F, Müllertaubenberger A, Geriscb G, Baumeister W (1993) Proteasomes from Dictyostelium Discoideum — characterization of structure and function-J Struct Biol 111:135–147

    Google Scholar 

  • Scherrer K (1990) Prosomes subcomplexes of untranslated messenger RNP. Mol Biol Rep 14:1–9

    Google Scholar 

  • Scherrer K, Bey F (1994) The prosomes (Multicatalytic Proteinase-Proteasomes) and their relation to the untranslated messenger ribonucleoproteins, the cytoskeleton and cell differentiation. Prog Nucleic Acids Res Mol Biol, in press

  • Schmid HP, Akhayat O, Martins de Sa C, Puvion F, Koehler K, Scherrer K (1984) The prosome: an ubiquitous morphologically distinct RNP particle associated with repressed mRNPs and containing specific ScRNA and a characteristic set of proteins. EMBO J 3:29–34

    Google Scholar 

  • Seelig A, Multhaup G, Pesoldhurt B, Beyreuther K, Kloetzel PM (1993) Drosophila proteasome dm25 subunit substitutes the mouse mc3 subunit in hybrid proteasomes — the N-terminal domain is essential for subunit incorporation. J Biol Chem 268:25561–25567

    Google Scholar 

  • Silva-Pereira I, Bey F, Coux O, Scherrer K (1992) Two mRNAs exist for the Hs Pros-30 gene encoding a component of human prosomes. Gene 120:235–242

    Google Scholar 

  • Skilton HE, Eperon IC, Rivett AJ (1991) Co-purification of a small RNA species with Multicatalytic Proteinase (proteasome) from rat liver. FEBS Lett 279:351–355

    Google Scholar 

  • Sorimachi H, Tsukahara T, Kawasaki H, Ishiura S, Emori Y, Sugita H, Suzuki K (1990) Molecular cloning of cDNAs for 2 subunits of rat Multicatalytic Proteinase — existence of N-terminal conserved and C-terminal diverged sequences among subunits. Eur J Biochem 193:775–781

    Google Scholar 

  • Spohr G, Granboulan N, Morel C, Scherrer K (1970) Messenger RNA in Hela cells: an investigation of free and polyribosome-bound cytoplasmic messenger ribonucleoprotein particles by kinetic labelling and electron microscopy. Eur J Biochem 17:296–318

    Google Scholar 

  • Tamura T, Tanaka K, Kumatori A, Yamada F, Tsurumi C, Fujiwara T, Ichihara A, Tokunaga F, Aruga R, Iwanaga S (1990) cDNA cloning and sequencing of component C5 of proteasomes from rat hepatoma cells. FEBS Lett 264:91–94

    Google Scholar 

  • Tamura T, Lee DH, Osaka F, Fujiwara T, Shin S, Chung CH, Tanaka K, Ichihara A (1991) Molecular cloning and sequence analysis of cDNAs for five major subunits of human proteasomes (Multi-Catalytic Proteinase complexes). Biochim Biophys Acta 1089:95–102

    Google Scholar 

  • Tamura T, Shimbara N, Aki M, Ishida N, Bey F, Scherrer K, Tanaka K, Ichihara A (1992) Molecular cloning of cDNAs for rat proteasomes: deduced primary structures of four other subunits. J Biochem 112:530–534

    Google Scholar 

  • Tanaka K, Fujiwara T, Kumatori A, Shin S, Yoshimura T, Ichihara A, Tokunaga F, Aruga R, Iwanaga S, Kakizuka A, Nakanishi S (1990) Molecular cloning of cDNA for proteasomes from rat liver: primary structure of component C3 with a possible tyrosine phosphorylation site. Biochemistry 29:3777–3785

    Google Scholar 

  • Tanaka K, Ichihara A (1989) Half-life of proteasomes (multiprotease complexes) in rat liver. Biochem Biophys Res Commun 159:1309–1315

    Google Scholar 

  • Tanaka K, Yoshimura T, Ichihara A (1989) Role of substrate in reversible activation of proteasomes (multi-protease complexes) by sodium dodecyl-sulfate. J Biochem 106:495–500

    Google Scholar 

  • Tanaka K, Kanayama H, Tamura T, Lee DH, Kumatori A, Fujiwara T, Ichihara A, Tokunaga F, Aruga R, Iwanaga S (1990) cDNA cloning and sequencing of component C8 of proteasomes from rat hepatoma cells. Biochem Biophys Res Commun 171:676–683

    Google Scholar 

  • Thomson S, Batson DF, Rivett AJ (1993) cDNA cloning of a new type of subunit of mammalian proteasomes. FEBS Lett 322:135–138

    Google Scholar 

  • Tokunaga F, Aruga R, Iwanaga S, Tanaka K, Ichihara A, Takao T, Shimonishi Y (1990) The NH2-terminal residues of rat liver proteasome (multicatalytic proteinase complex) subunits, C2, C3 and C8, are Na-acetylated. FEBS Lett 263:373–375

    Google Scholar 

  • Trowsdale J, Beck S, Belich M, Glynne R, Jackson A, Kelly A, Powis S, Sanderson F, Sanseau P (1994) Organization and functions of the class II region of the human MHC. J Cell Biochem 18D (Suppl.):286

    Google Scholar 

  • Van Riel MCHM, Martens GJM (1991) Cloning and sequence analysis of pituitary cDNA encoding the beta-subunit of Xenopus proteasome. FEBS Lett 291:37–40

    Google Scholar 

  • Weitman D, Etlinger JD (1992) A monoclonal antibody that distinguishes latent and active forms of the proteasome (Multicatalytic Proteinase Complex). J Biol Chem 267:6977–6982

    Google Scholar 

  • Yang Y, Füh K, Peterson PA (1994) Interferon-γ inducible proteasome subunits replace constitutively expressed subunits. J Cell Biochem 18D (Suppl.):149

    Google Scholar 

  • Yang Y, Waters JB, Früh K, Peterson PA (1992) Proteasomes are regulated by interferon γ: implications for antigen processing. Proc Natl Acad Sci USA 89:4928–4932

    Google Scholar 

  • Zhou P, Cao H, Smart M, David C (1993) Molecular basis of genetic polymorphism in major histocompatibility complex-linked proteasome gene (Lmp-2). Proc Natl Acad Sci USA 90:2681–2684

    Google Scholar 

  • Zwickl P, Lottspeich F, Dahlmann B, Baumeister W (1991) Cloning and sequencing of the gene encoding the large (alpha-) subunit of the proteasome from Thermoplasma acidophilum. FEBS Lett 278:217–221

    Google Scholar 

  • Zwickl P, Grziwa A, Puhler G, Dahlmann B, Lottspeich F, Baumeister W (1992a) Primary structure of the Thermoplasma proteasome and its implications for the structure, function, and evolution of the Multicatalytic Proteinase. Biochemistry 31:964–972

    Google Scholar 

  • Zwickl P, Lottspeich F, Baumeister W (1992b) Expression of functional Thermoplasma acidophilum proteasomes in Escherichia coli. FEBS Lett 312:157–160

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by G. Georgiev

Rights and permissions

Reprints and permissions

About this article

Cite this article

Coux, O., Nothwang, H.G., Silva Pereira, I. et al. Phylogenic relationships of the amino acid sequences of prosome (proteasome, MCP) subunits. Molec. Gen. Genet. 245, 769–780 (1994). https://doi.org/10.1007/BF00297284

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00297284

Key words

Navigation