Skip to main content

Part of the book series: Interactomics and Systems Biology ((INTERACTOM,volume 1))

  • 1371 Accesses

Abstract

Proteasomes are at the heart of the ubiquitin-proteasome system and are responsible for the degradation of the majority of intracellular proteins in eukaryotes. Consequently, proteasome activity impacts all cellular processes. Recent structural advances have provided the most informative view yet of the architecture of the proteasome, enriching our already detailed knowledge of its function. An interesting question, which continues to draw much experimental attention, is how these large molecular machines are put together in the first place. Over the last decade, the picture that has emerged is that of an ordered, efficient, and highly regulated process. Assembly of the proteasome is dependent upon intrinsic structural features distributed among the ~ 33 subunits that comprise it, and upon extrinsic protein factors, some of which function as dedicated proteasome chaperones. This chapter summarizes our understanding of the mechanism by which cells bring proteasomes into existence.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

UPS:

Ubiquitin proteasome system

CP:

Core particle

RP:

Regulatory particle

Rpt:

Regulatory particle ATPase

Rpn:

Regulatory particle non-ATPase

HbYX:

Hydrophobic-tyrosine-any amino acid

PHP:

Preholoproteasome

ER:

Endoplasmic reticulum

PAC:

Proteasome assembly chaperone

RAC:

RP assembly chaperone

References

  1. Ben-Shem A, Garreau de Loubresse N, Melnikov S, Jenner L, Yusupova G, Yusupov M (2011) The structure of the eukaryotic ribosome at 3.0 Å resolution. Science 334(6062):1524–1529. doi:10.1126/science.1212642science, 1212642 [pii]

    CAS  PubMed  Google Scholar 

  2. Finley D, Ulrich HD, Sommer T, Kaiser P (2012) The ubiquitin-proteasome system of Saccharomyces cerevisiae. Genetics 192(2):319–360. doi:10.1534/genetics,112.140467192/2/319 [pii]

    CAS  PubMed Central  PubMed  Google Scholar 

  3. Komander D, Rape M (2012) The ubiquitin code. å81:203–229. doi:10.1146/annurev-biochem-060310-170328

    CAS  PubMed  Google Scholar 

  4. Hochstrasser M, Deng M, Kusmierczyk AR, Li X, Kreft SG, Ravid T, Funakoshi M, Kunjappu M, Xie Y (2008) Molecular genetics of the ubiquitin-proteasome system: lessons from yeast. Ernst Schering Found Symp Proc (1):41–66

    Google Scholar 

  5. Staley JP, Woolford JL Jr. (2009) Assembly of ribosomes and spliceosomes: complex ribonucleoprotein machines. Curr Opin Cell Biol 21(1):109–118. doi:10.1016/j.ceb.2009.01.003, S0955-0674(09)00005-2 [pii]

    CAS  PubMed Central  PubMed  Google Scholar 

  6. Kressler D, Hurt E, Bassler J (2010) Driving ribosome assembly. Biochim Biophys Acta 1803(6):673–683. doi:10.1016/j.bbamcr.2009.10.009, S0167-4889(09)00265−1 [pii]

    CAS  PubMed  Google Scholar 

  7. Heinemeyer W, Trondle N, Albrecht G, Wolf DH (1994) PRE5 and PRE6, the last missing genes encoding 20S proteasome subunits from yeast? Indication for a set of 14 different subunits in the eukaryotic proteasome core. BioChemistry 33(40):12229–12237

    CAS  PubMed  Google Scholar 

  8. Chen P, Hochstrasser M (1995) Biogenesis, structure and function of the yeast 20S proteasome. EMBO J 14(11):2620–2630

    CAS  PubMed Central  PubMed  Google Scholar 

  9. Lowe J, Stock D, Jap B, Zwickl P, Baumeister W, Huber R (1995) Crystal structure of the 20S proteasome from the archaeon T. acidophilum at 3.4 A resolution. Science 268(5210):533–539

    CAS  PubMed  Google Scholar 

  10. Groll M, Ditzel L, Lowe J, Stock D, Bochtler M, Bartunik HD, Huber R (1997) Structure of 20S proteasome from yeast at 2.4 A resolution. Nature 386(6624):463–471. doi:10.1038/386463a0

    CAS  PubMed  Google Scholar 

  11. Seemuller E, Lupas A, Stock D, Lowe J, Huber R, Baumeister W (1995) Proteasome from Thermoplasma acidophilum: a threonine protease. Science 268(5210):579–582

    CAS  PubMed  Google Scholar 

  12. Brannigan JA, Dodson G, Duggleby HJ, Moody PC, Smith JL, Tomchick DR, Murzin AG (1995) A protein catalytic framework with an N-terminal nucleophile is capable of self-activation. Nature 378(6555):416–419. doi:10.1038/378416a0

    CAS  PubMed  Google Scholar 

  13. Chen P, Hochstrasser M (1996) Autocatalytic subunit processing couples active site formation in the 20S proteasome to completion of assembly. Cell 86(6):961–972. doi:10.1016/S0092-8674(00)80171−3 [pii]

    CAS  PubMed  Google Scholar 

  14. Witt S, Kwon YD, Sharon M, Felderer K, Beuttler M, Robinson CV, Baumeister W, Jap BK (2006) Proteasome assembly triggers a switch required for active-site maturation. Structure 14(7):1179–1188. doi:10.1016/j.str.2006.05.019, S0969-2126(06)00258-9 [pii]

    CAS  PubMed  Google Scholar 

  15. Arendt CS, Hochstrasser M (1997) Identification of the yeast 20S proteasome catalytic centers and subunit interactions required for active-site formation. Proc Natl Acad Sci U S A 94(14):7156–7161

    CAS  PubMed Central  PubMed  Google Scholar 

  16. Basler M, Kirk CJ, Groettrup M (2013) The immunoproteasome in antigen processing and other immunological functions. Curr Opin Immunol 25(1):74–80. doi:10.1016/j.coi.2012.11.004, S0952-7915(12)00185-9 [pii]

    CAS  PubMed  Google Scholar 

  17. Takahama Y, Takada K, Murata S, Tanaka K (2012) beta5t-containing thymoproteasome: specific expression in thymic cortical epithelial cells and role in positive selection of CD8+ T cells. Curr Opin Immunol 24(1):92–98. doi:10.1016/j.coi.2012.01.006, S0952-7915(12)00008-8 [pii]

    CAS  PubMed  Google Scholar 

  18. Driscoll J, Brown MG, Finley D, Monaco JJ (1993) MHC-linked LMP gene products specifically alter peptidase activities of the proteasome. Nature 365(6443):262–264. doi:10.1038/365262a0

    CAS  PubMed  Google Scholar 

  19. Gaczynska M, Rock KL, Goldberg AL (1993) Gamma-interferon and expression of MHC genes regulate peptide hydrolysis by proteasomes. Nature 365(6443):264–267. doi:10.1038/365264a0

    CAS  PubMed  Google Scholar 

  20. Murata S, Sasaki K, Kishimoto T, Niwa S, Hayashi H, Takahama Y, Tanaka K (2007) Regulation of CD8+ T cell development by thymus-specific proteasomes. Science 316(5829):1349–1353. doi:10.1126/science.1141915, 316/5829/1349[pii]

    CAS  PubMed  Google Scholar 

  21. Qian MX, Pang Y, Liu CH, Haratake K, Du BY, Ji DY, Wang GF, Zhu QQ, Song W, Yu Y, Zhang XX, Huang HT, Miao S, Chen LB, Zhang ZH, Liang YN, Liu S, Cha H, Yang D, Zhai Y, Komatsu T, Tsuruta F, Li H, Cao C, Li W, Li GH, Cheng Y, Chiba T, Wang L, Goldberg AL, Shen Y, Qiu XB (2013) Acetylation-mediated proteasomal degradation of core histones during DNA repair and spermatogenesis. Cell 153(5):1012–1024. doi:10.1016/j.cell.2013.04.032, S0092-8674(13)00508-4 [pii]

    CAS  PubMed Central  PubMed  Google Scholar 

  22. Maupin-Furlow J (2012) Proteasomes and protein conjugation across domains of life. Nat Rev Microbiol 10(2):100–111. doi:10.1038/nrmicro2696nrmicro2696 [pii]

    Google Scholar 

  23. Groll M, Bajorek M, Kohler A, Moroder L, Rubin DM, Huber R, Glickman MH, Finley D (2000) A gated channel into the proteasome core particle. Nat Struct Biol 7(11):1062–1067. doi:10.1038/80992

    CAS  PubMed  Google Scholar 

  24. Glickman MH, Rubin DM, Fried VA, Finley D (1998) The regulatory particle of the Saccharomyces cerevisiae proteasome. Mol Cell Biol 18(6):3149–3162

    CAS  PubMed Central  PubMed  Google Scholar 

  25. Glickman MH, Rubin DM, Coux O, Wefes I, Pfeifer G, Cjeka Z, Baumeister W, Fried VA, Finley D (1998) A subcomplex of the proteasome regulatory particle required for ubiquitin-conjugate degradation and related to the COP9-signalosome and eIF3. Cell 94(5):615-623. doi:10.1016/S0092-8674(00)81603-7 [pii]

    Google Scholar 

  26. Glickman MH, Rubin DM, Fu H, Larsen CN, Coux O, Wefes I, Pfeifer G, Cjeka Z, Vierstra R, Baumeister W, Fried V, Finley D (1999) Functional analysis of the proteasome regulatory particle. Mol Biol Rep 26(1–2):21–28

    Google Scholar 

  27. Tomko RJ Jr, Funakoshi M, Schneider K, Wang J, Hochstrasser M (2010) Heterohexameric ring arrangement of the eukaryotic proteasomal ATPases: implications for proteasome structure and assembly. Mol Cell 38(3):393–403. doi:10.1016/j.molcel.2010.02.035, S1097-2765(10)00314-X [pii]

    CAS  PubMed Central  PubMed  Google Scholar 

  28. Smith DM, Kafri G, Cheng Y, Ng D, Walz T, Goldberg AL (2005) ATP binding to PAN or the 26S ATPases causes association with the 20S proteasome, gate opening, and translocation of unfolded proteins. Mol Cell 20(5):687–698. doi:10.1016/j.molcel.2005.10.019, S1097-2765(05)01714-4 [pii]

    CAS  PubMed  Google Scholar 

  29. Zhang F, Wu Z, Zhang P, Tian G, Finley D, Shi Y (2009) Mechanism of substrate unfolding and translocation by the regulatory particle of the proteasome from Methanocaldococcus jannaschii. Mol Cell 34(4):485–496. doi:10.1016/j.molcel.2009.04.022, S1097-2765(09)00275-5 [pii]

    CAS  PubMed  Google Scholar 

  30. Forster A, Masters EI, Whitby FG, Robinson H, Hill CP (2005) The 1.9 A structure of a proteasome-11S activator complex and implications for proteasome-PAN/PA700 interactions. Mol Cell 18(5):589–599. doi:10.1016/j.molcel.2005.04.016, S1097-2765(05)01279-7 [pii]

    PubMed  Google Scholar 

  31. Smith DM, Chang SC, Park S, Finley D, Cheng Y, Goldberg AL (2007) Docking of the proteasomal ATPases’ carboxyl termini in the 20S proteasome’s alpha ring opens the gate for substrate entry. Mol Cell 27(5):731–744. doi:10.1016/j.molcel.2007.06.033, S1097-2765(07)00445-5 [pii]

    CAS  PubMed Central  PubMed  Google Scholar 

  32. Yu Y, Smith DM, Kim HM, Rodriguez V, Goldberg AL, Cheng Y (2010) Interactions of PAN’s C-termini with archaeal 20S proteasome and implications for the eukaryotic proteasome-ATPase interactions. EMBO J 29(3):692–702. doi:10.1038/emboj.2009.382, emboj2009382 [pii]

    Google Scholar 

  33. Stadtmueller BM, Hill CP (2011) Proteasome activators. Mol Cell 41(1):8–19. doi:10.1016/j.molcel.2010.12.020, S1097-2765(10)01005-1 [pii]

    CAS  PubMed Central  PubMed  Google Scholar 

  34. Kajava AV (2002) What curves alpha-solenoids? Evidence for an alpha-helical toroid structure of Rpn1 and Rpn2 proteins of the 26S proteasome. J Biol Chem 277(51):49791–49798. doi:10.1074/jbc, M204982200M204982200 [pii]

    Google Scholar 

  35. Lander GC, Estrin E, Matyskiela ME, Bashore C, Nogales E, Martin A (2012) Complete subunit architecture of the proteasome regulatory particle. Nature 482(7384):186–191. doi:10.1038/nature10774, nature10774 [pii]

    CAS  PubMed Central  PubMed  Google Scholar 

  36. Lasker K, Forster F, Bohn S, Walzthoeni T, Villa E, Unverdorben P, Beck F, Aebersold R, Sali A, Baumeister W (2012) Molecular architecture of the 26S proteasome holocomplex determined by an integrative approach. Proc Natl Acad Sci U S A 109(5):1380–1387. doi:10.1073/pnas.1120559109, 1120559109 [pii]

    CAS  PubMed Central  PubMed  Google Scholar 

  37. da Fonseca PC, He J, Morris EP (2012) Molecular Model of the human 26S proteasome. Mol Cell 46(1):54–66. doi:10.1016/j.molcel.2012.03.026, S1097-2765(12)00263-8 [pii]

    Google Scholar 

  38. Deveraux Q, Ustrell V, Pickart C, Rechsteiner M (1994) A 26S protease subunit that binds ubiquitin conjugates. J Biol Chem 269(10):7059–7061

    Google Scholar 

  39. van Nocker S, Deveraux Q, Rechsteiner M, Vierstra RD (1996) Arabidopsis MBP1 gene encodes a conserved ubiquitin recognition component of the 26S proteasome. Proc Natl Acad Sci U S A 93(2):856–860

    CAS  PubMed Central  PubMed  Google Scholar 

  40. Husnjak K, Elsasser S, Zhang N, Chen X, Randles L, Shi Y, Hofmann K, Walters KJ, Finley D, Dikic I (2008) Proteasome subunit Rpn13 is a novel ubiquitin receptor. Nature 453(7194):481–488. doi:10.1038/nature06926, nature06926 [pii]

    CAS  PubMed Central  PubMed  Google Scholar 

  41. Schreiner P, Chen X, Husnjak K, Randles L, Zhang N, Elsasser S, Finley D, Dikic I, Walters KJ, Groll M (2008) Ubiquitin docking at the proteasome through a novel pleckstrin-homology domain interaction. Nature 453(7194):548–552. doi:10.1038/nature06924, nature06924 [pii]

    CAS  PubMed Central  PubMed  Google Scholar 

  42. Verma R, Aravind L, Oania R, McDonald WH, Yates JR 3rd, Koonin EV, Deshaies RJ (2002) Role of Rpn11 metalloprotease in deubiquitination and degradation by the 26S proteasome. Science 298(5593):611–615. doi:10.1126/science, 10758981075898 [pii]

    CAS  PubMed  Google Scholar 

  43. Yao T, Cohen RE (2002) A cryptic protease couples deubiquitination and degradation by the proteasome. Nature 419(6905):403–407. doi:10.1038/nature01071, nature01071 [pii]

    CAS  PubMed  Google Scholar 

  44. Walz J, Erdmann A, Kania M, Typke D, Koster AJ, Baumeister W (1998) 26S proteasome structure revealed by three-dimensional electron microscopy. J Struct Biol 121(1):19–29. doi:10.1006/jsbi.1998.3958, S1047-8477(98)93958-2 [pii]

    CAS  PubMed  Google Scholar 

  45. da Fonseca PC, Morris EP (2008) Structure of the human 26S proteasome: subunit radial displacements open the gate into the proteolytic core. J Biol Chem 283(34):23305–23314. doi:10.1074/jbc.M802716200, M802716200 [pii]

    Google Scholar 

  46. Nickell S, Beck F, Scheres SH, Korinek A, Forster F, Lasker K, Mihalache O, Sun N, Nagy I, Sali A, Plitzko JM, Carazo JM, Mann M, Baumeister W (2009) Insights into the molecular architecture of the 26S proteasome. Proc Natl Acad Sci U S A 106(29):11943–11947. doi:10.1073/pnas.0905081106, 0905081106 [pii]

    CAS  PubMed Central  PubMed  Google Scholar 

  47. Bohn S, Beck F, Sakata E, Walzthoeni T, Beck M, Aebersold R, Forster F, Baumeister W, Nickell S (2010) Structure of the 26S proteasome from Schizosaccharomyces pombe at subnanometer resolution. Proc Natl Acad Sci U S A 107(49):20992–20997. doi:10.1073/pnas.1015530107, 1015530107 [pii]

    CAS  PubMed Central  PubMed  Google Scholar 

  48. Beck F, Unverdorben P, Bohn S, Schweitzer A, Pfeifer G, Sakata E, Nickell S, Plitzko JM, Villa E, Baumeister W, Forster F (2012) Near-atomic resolution structural model of the yeast 26S proteasome. Proc Natl Acad Sci U S A 109(37):14870–14875. doi:10.1073/pnas.1213333109, 1213333109 [pii]

    CAS  PubMed Central  PubMed  Google Scholar 

  49. Matyskiela ME, Lander GC, Martin A (2013) Conformational switching of the 26S proteasome enables substrate degradation. Nat Struct Mol Biol 20(7):781–788. doi:10.1038/nsmb.2616, nsmb.2616 [pii]

    CAS  PubMed Central  PubMed  Google Scholar 

  50. Tomko RJ Jr, Hochstrasser M (2013) Molecular architecture and assembly of the eukaryotic proteasome. Annu Rev Biochem 82:415–445. doi:10.1146/annurev-biochem-060410-150257

    CAS  PubMed  Google Scholar 

  51. Kish-Trier E, Hill CP (2013) Structural biology of the proteasome. Annu Rev Biophys 42:29–49. doi:10.1146/annurev-biophys-083012-130417

    CAS  PubMed  Google Scholar 

  52. Kunjappu MJ, Hochstrasser M (2013) Assembly of the 20S proteasome. Biochim Biophys Acta. doi:10.1016/j.bbamcr.2013.03.008, S0167-4889(13)00099-2 [pii]

    Google Scholar 

  53. Zwickl P, Kleinz J, Baumeister W (1994) Critical elements in proteasome assembly. Nat Struct Biol 1(11):765–770

    Google Scholar 

  54. Frentzel S, Pesold-Hurt B, Seelig A, Kloetzel PM (1994) 20S proteasomes are assembled via distinct precursor complexes. Processing of LMP2 and LMP7 proproteins takes place in 13-16S preproteasome complexes. J Mol Biol 236(4):975–981. doi:10.1016/0022-2836(94)90003-5 [pii]

    CAS  PubMed  Google Scholar 

  55. Nandi D, Woodward E, Ginsburg DB, Monaco JJ (1997) Intermediates in the formation of mouse 20S proteasomes: implications for the assembly of precursor beta subunits. EMBO J 16(17):5363–5375. doi:10.1093/emboj/16.17.5363

    Google Scholar 

  56. Schmidtke G, Schmidt M, Kloetzel PM (1997) Maturation of mammalian 20S proteasome: purification and characterization of 13S and 16S proteasome precursor complexes. J Mol Biol 268(1):95–106. doi:10.1006/jmbi.1997.0947, S0022-2836(97)90947-5 [pii]

    CAS  PubMed  Google Scholar 

  57. Li X, Kusmierczyk AR, Wong P, Emili A, Hochstrasser M (2007) beta-Subunit appendages promote 20S proteasome assembly by overcoming an Ump1-dependent checkpoint. EMBO J 26(9):2339–2349. doi:10.1038/sj.emboj.7601681, 7601681 [pii]

    Google Scholar 

  58. Hirano Y, Kaneko T, Okamoto K, Bai M, Yashiroda H, Furuyama K, Kato K, Tanaka K, Murata S (2008) Dissecting beta-ring assembly pathway of the mammalian 20S proteasome. EMBO J 27(16):2204–2213. doi:10.1038/emboj.2008.148, emboj2008148 [pii]

    CAS  PubMed Central  PubMed  Google Scholar 

  59. Baumeister W, Walz J, Zuhl F, Seemuller E (1998) The proteasome: paradigm of a self-compartmentalizing protease. Cell 92(3):367–380. doi:10.1016/S0092-8674(00)80929-0 [pii]

    CAS  PubMed  Google Scholar 

  60. Groll M, Brandstetter H, Bartunik H, Bourenkow G, Huber R (2003) Investigations on the maturation and regulation of archaebacterial proteasomes. J Mol Biol 327(1):75–83. doi:10.1016/S0022-2836(03)00080-9 [pii]

    Google Scholar 

  61. Ramos PC, Hockendorff J, Johnson ES, Varshavsky A, Dohmen RJ (1998) Ump1p is required for proper maturation of the 20S proteasome and becomes its substrate upon completion of the assembly. Cell 92(4):489–499. doi:S0092-8674(00)80942-3 [pii]

    CAS  PubMed  Google Scholar 

  62. Hirano Y, Hendil KB, Yashiroda H, Iemura S, Nagane R, Hioki Y, Natsume T, Tanaka K, Murata S (2005) A heterodimeric complex that promotes the assembly of mammalian 20S proteasomes. Nature 437(7063):1381–1385. doi:10.1038/nature04106, nature04106 [pii]

    Google Scholar 

  63. Kusmierczyk AR, Kunjappu MJ, Kim RY, Hochstrasser M (2011) A conserved 20S proteasome assembly factor requires a C-terminal HbYX motif for proteasomal precursor binding. Nat Struct Mol Biol 18(5):622–629. doi: 10.71038/nsmb.2027, nsmb.2027 [pii]

    CAS  PubMed Central  PubMed  Google Scholar 

  64. Unno M, Mizushima T, Morimoto Y, Tomisugi Y, Tanaka K, Yasuoka N, Tsukihara T (2002) The structure of the mammalian 20S proteasome at 2.75 A resolution. Structure 10(5):609–618. doi: 10.1016/S0969-2126(02)00748-7 [pii]

    Google Scholar 

  65. Volker C, Lupas AN (2002) Molecular evolution of proteasomes. Curr Top Microbiol Immunol 268:1–22

    CAS  PubMed  Google Scholar 

  66. Gerards WL, Enzlin J, Haner M, Hendriks IL, Aebi U, Bloemendal H, Boelens W (1997) The human alpha-type proteasomal subunit HsC8 forms a double ringlike structure, but does not assemble into proteasome-like particles with the beta-type subunits HsDelta or HsBPROS26. J Biol Chem 272(15):10080–10086

    CAS  PubMed  Google Scholar 

  67. Gerards WL, de Jong WW, Bloemendal H, Boelens W (1998) The human proteasomal subunit HsC8 induces ring formation of other alpha-type subunits. J Mol Biol 275(1):113–121. doi:10.1006/jmbi.1997.1429, S0022-2836(97)91429-7 [pii]

    CAS  PubMed  Google Scholar 

  68. Arendt CS, Hochstrasser M (1999) Eukaryotic 20S proteasome catalytic subunit propeptides prevent active site inactivation by N-terminal acetylation and promote particle assembly. EMBO J 18(13):3575–3585. doi:10.1093/emboj/18.13.3575

    Google Scholar 

  69. Groll M, Heinemeyer W, Jager S, Ullrich T, Bochtler M, Wolf DH, Huber R (1999) The catalytic sites of 20S proteasomes and their role in subunit maturation: a mutational and crystallographic study. Proc Natl Acad Sci U S A 96(20):10976–10983

    CAS  PubMed Central  PubMed  Google Scholar 

  70. Ramos PC, Marques AJ, London MK, Dohmen RJ (2004) Role of C-terminal extensions of subunits beta2 and beta7 in assembly and activity of eukaryotic proteasomes. J Biol Chem 279(14):14323–14330. doi:10.1074/jbc.M308757200, M308757200 [pii]

    CAS  PubMed  Google Scholar 

  71. Marques AJ, Glanemann C, Ramos PC, Dohmen RJ (2007) The C-terminal extension of the beta7 subunit and activator complexes stabilize nascent 20S proteasomes and promote their maturation. J Biol Chem 282(48):34869–34876. doi:10.1074/jbc.M705836200, M705836200 [pii]

    CAS  PubMed  Google Scholar 

  72. Burri L, Hockendorff J, Boehm U, Klamp T, Dohmen RJ, Levy F (2000) Identification and characterization of a mammalian protein interacting with 20S proteasome precursors. Proc Natl Acad Sci U S A 97(19):10348–10353. doi:10.1073/pnas.190268597, 190268597 [pii]

    CAS  PubMed Central  PubMed  Google Scholar 

  73. Griffin TA, Slack JP, McCluskey TS, Monaco JJ, Colbert RA (2000) Identification of proteassemblin, a mammalian homologue of the yeast protein, Ump1p, that is required for normal proteasome assembly. Mol Cell Biol Res Commun 3(4):212–217. doi:10.1006/mcbr.2000.0213, S1522472400902137 [pii]

    CAS  PubMed  Google Scholar 

  74. Witt E, Zantopf D, Schmidt M, Kraft R, Kloetzel PM, Kruger E (2000) Characterisation of the newly identified human Ump1 homologue POMP and analysis of LMP7(beta 5i) incorporation into 20S proteasomes. J Mol Biol 301(1):1–9. doi:10.1006/jmbi.2000.3959, S0022-2836(00)93959-7 [pii]

    CAS  PubMed  Google Scholar 

  75. Hirano Y, Hayashi H, Iemura S, Hendil KB, Niwa S, Kishimoto T, Kasahara M, Natsume T, Tanaka K, Murata S (2006) Cooperation of multiple chaperones required for the assembly of mammalian 20S proteasomes. Mol Cell 24(6):977–984. doi:10.1016/j.molcel.2006.11.015, S1097-2765(06)00786-6 [pii]

    CAS  PubMed  Google Scholar 

  76. Cagney G, Uetz P, Fields S (2001) Two-hybrid analysis of the Saccharomyces cerevisiae 26S proteasome. Physiol Genomics 7(1):27–34.

    Google Scholar 

  77. Jayarapu K, Griffin TA (2004) Protein-protein interactions among human 20S proteasome subunits and proteassemblin. Biochem Biophys Res Commun 314(2):523–528. doi:10.1016/j.bbrc.2003.12.119 [pii]

    CAS  PubMed  Google Scholar 

  78. Fricke B, Heink S, Steffen J, Kloetzel PM, Kruger E (2007) The proteasome maturation protein POMP facilitates major steps of 20S proteasome formation at the endoplasmic reticulum. EMBO Rep 8(12):1170–1175. doi:10.1038/sj.embor.7401091, 7401091 [pii]

    Google Scholar 

  79. Hoefer MM, Boneberg EM, Grotegut S, Kusch J, Illges H (2006) Possible tetramerisation of the proteasome maturation factor POMP/proteassemblin/hUmp1 and its subcellular localisation. Int J Biol Macromol 38(3–5):259–267. doi:10.1016/j.ijbiomac.2006.03.015, S0141-8130(06)00096-1 [pii]

    CAS  PubMed  Google Scholar 

  80. Akahane T, Sahara K, Yashiroda H, Tanaka K, Murata S (2013) Involvement of Bag6 and the TRC pathway in proteasome assembly. Nat Commun 4:2234. doi:10.1038/ncomms3234, ncomms3234 [pii]

    Google Scholar 

  81. Palmer EA, Kruse KB, Fewell SW, Buchanan SM, Brodsky JL, McCracken AA (2003) Differential requirements of novel A1PiZ degradation deficient (ADD) genes in ER-associated protein degradation. J Cell Sci 116(Pt 11):2361–2373. doi:10.1242/jcs.00439, jcs.00439 [pii]

    CAS  PubMed  Google Scholar 

  82. Scott CM, Kruse KB, Schmidt BZ, Perlmutter DH, McCracken AA, Brodsky JL (2007) ADD66, a gene involved in the endoplasmic reticulum-associated degradation of alpha-1-antitrypsin-Z in yeast, facilitates proteasome activity and assembly. Mol Biol Cell 18(10):3776–3787. doi:10.1091/mbc.E07-01-0034, E07-01-0034 [pii]

    Google Scholar 

  83. Le Tallec B, Barrault MB, Courbeyrette R, Guerois R, Marsolier-Kergoat MC, Peyroche A (2007) 20S proteasome assembly is orchestrated by two distinct pairs of chaperones in yeast and in mammals. Mol Cell 27(4):660–674. doi:10.1016/j.molcel.2007.06.025, S1097-2765(07)00415-7 [pii]

    Google Scholar 

  84. Krogan NJ, Cagney G, Yu H, Zhong G, Guo X, Ignatchenko A, Li J, Pu S, Datta N, Tikuisis AP, Punna T, Peregrin-Alvarez JM, Shales M, Zhang X, Davey M, Robinson MD, Paccanaro A, Bray JE, Sheung A, Beattie B, Richards DP, Canadien V, Lalev A, Mena F, Wong P, Starostine A, Canete MM, Vlasblom J, Wu S, Orsi C, Collins SR, Chandran S, Haw R, Rilstone JJ, Gandi K, Thompson NJ, Musso G, St Onge P, Ghanny S, Lam MH, Butland G, Altaf-Ul AM, Kanaya S, Shilatifard A, O’Shea E, Weissman JS, Ingles CJ, Hughes TR, Parkinson J, Gerstein M, Wodak SJ, Emili A, Greenblatt JF (2006) Global landscape of protein complexes in the yeast Saccharomyces cerevisiae. Nature 440(7084):637–643. doi:10.1038/nature04670, nature04670 [pii]

    Google Scholar 

  85. Stadtmueller BM, Kish-Trier E, Ferrell K, Petersen CN, Robinson H, Myszka DG, Eckert DM, Formosa T, Hill CP (2012) Structure of a proteasome Pba1-Pba2 complex: implications for proteasome assembly, activation, and biological function. J Biol Chem 287(44):37371–37382. doi:10.1074/jbc.M112.367003, M112.367003 [pii]

    CAS  PubMed Central  PubMed  Google Scholar 

  86. Gillette TG, Kumar B, Thompson D, Slaughter CA, DeMartino GN (2008) Differential roles of the COOH termini of AAA subunits of PA700 (19S regulator) in asymmetric assembly and activation of the 26S proteasome. J Biol Chem 283(46):31813–31822. doi:10.1074/jbc.M805935200, M805935200 [pii]

    CAS  PubMed Central  PubMed  Google Scholar 

  87. Sadre-Bazzaz K, Whitby FG, Robinson H, Formosa T, Hill CP (2010) Structure of a Blm10 complex reveals common mechanisms for proteasome binding and gate opening. Mol Cell 37(5):728–735. doi:10.1016/j.molcel.2010.02.002, S1097-2765(10)00116-4 [pii]

    CAS  PubMed Central  PubMed  Google Scholar 

  88. Dange T, Smith D, Noy T, Rommel PC, Jurzitza L, Cordero RJ, Legendre A, Finley D, Goldberg AL, Schmidt M (2011) Blm10 protein promotes proteasomal substrate turnover by an active gating mechanism. J Biol Chem 286(50):42830–42839. doi:10.1074/jbc.M111.300178, M111.300178 [pii]

    Google Scholar 

  89. Barthelme D, Sauer RT (2012) Identification of the Cdc48*20S proteasome as an ancient AAA+ proteolytic machine. Science 337(6096):843–846. doi:10.1126/science.1224352, science.1224352 [pii]

    CAS  PubMed Central  PubMed  Google Scholar 

  90. Forouzan D, Ammelburg M, Hobel CF, Stroh LJ, Sessler N, Martin J, Lupas AN (2012) The archaeal proteasome is regulated by a network of AAA ATPases. J Biol Chem 287(46):39254–39262. doi:10.1074/jbc.M112.386458, M112.386458 [pii]

    CAS  PubMed Central  PubMed  Google Scholar 

  91. Barthelme D, Sauer RT (2013) Bipartite determinants mediate an evolutionarily conserved interaction between Cdc48 and the 20S peptidase. Proc Natl Acad Sci U S A 110(9):3327–3332. doi:10.1073/pnas.1300408110, 1300408110 [pii]

    CAS  PubMed Central  PubMed  Google Scholar 

  92. Realini C, Jensen CC, Zhang Z, Johnston SC, Knowlton JR, Hill CP, Rechsteiner M (1997) Characterization of recombinant REGalpha, REGbeta, and REGgamma proteasome activators. J Biol Chem 272(41):25483–25492

    CAS  PubMed  Google Scholar 

  93. Whitby FG, Masters EI, Kramer L, Knowlton JR, Yao Y, Wang CC, Hill CP (2000) Structural basis for the activation of 20S proteasomes by 11S regulators. Nature 408(6808):115–120. doi:10.1038/35040607

    CAS  PubMed  Google Scholar 

  94. Park S, Kim W, Tian G, Gygi SP, Finley D (2011) Structural defects in the regulatory particle-core particle interface of the proteasome induce a novel proteasome stress response. J Biol Chem 286(42):36652–36666. doi:10.1074/jbc.M111.285924, M111.285924 [pii]

    CAS  PubMed Central  PubMed  Google Scholar 

  95. Kleijnen MF, Roelofs J, Park S, Hathaway NA, Glickman M, King RW, Finley D (2007) Stability of the proteasome can be regulated allosterically through engagement of its proteolytic active sites. Nat Struct Mol Biol 14(12):1180–1188. doi:10.1038/nsmb1335, nsmb1335 [pii]

    CAS  PubMed  Google Scholar 

  96. Osmulski PA, Hochstrasser M, Gaczynska M (2009) A tetrahedral transition state at the active sites of the 20S proteasome is coupled to opening of the alpha-ring channel. Structure 17(8):1137–1147. doi:10.1016/j.str.2009.06.011, S0969-2126(09)00253-6 [pii]

    CAS  PubMed Central  PubMed  Google Scholar 

  97. Ruschak AM, Kay LE (2012) Proteasome allostery as a population shift between interchanging conformers. Proc Natl Acad Sci U S A 109(50):E3454–E3462. doi:10.1073/pnas.1213640109, 1213640109 [pii]

    Google Scholar 

  98. Kumoi K, Satoh T, Murata K, Hiromoto T, Mizushima T, Kamiya Y, Noda M, Uchiyama S, Yagi H, Kato K (2013) An archaeal homolog of proteasome assembly factor functions as a proteasome activator. PLoS ONE 8(3):e60294. doi:10.1371/journal.pone.0060294, PONE-D-12-23454 [pii]

    CAS  PubMed Central  PubMed  Google Scholar 

  99. Kusmierczyk AR, Kunjappu MJ, Funakoshi M, Hochstrasser M (2008) A multimeric assembly factor controls the formation of alternative 20S proteasomes. Nat Struct Mol Biol 15(3):237–244. doi:10.1038/nsmb.1389, nsmb.1389 [pii]

    CAS  PubMed  Google Scholar 

  100. Yashiroda H, Mizushima T, Okamoto K, Kameyama T, Hayashi H, Kishimoto T, Niwa S, Kasahara M, Kurimoto E, Sakata E, Takagi K, Suzuki A, Hirano Y, Murata S, Kato K, Yamane T, Tanaka K (2008) Crystal structure of a chaperone complex that contributes to the assembly of yeast 20S proteasomes. Nat Struct Mol Biol 15(3):228–236. doi:10.1038/nsmb.1386, nsmb.1386 [pii]

    CAS  PubMed  Google Scholar 

  101. Hoyt MA, McDonough S, Pimpl SA, Scheel H, Hofmann K, Coffino P (2008) A genetic screen for Saccharomyces cerevisiae mutants affecting proteasome function, using a ubiquitin-independent substrate. Yeast 25(3):199–217. doi:10.1002/yea.1579

    CAS  PubMed  Google Scholar 

  102. Velichutina I, Connerly PL, Arendt CS, Li X, Hochstrasser M (2004) Plasticity in eucaryotic 20S proteasome ring assembly revealed by a subunit deletion in yeast. EMBO J 23(3):500–510. doi:10.1038/sj.emboj.7600059, 7600059 [pii]

    CAS  PubMed Central  PubMed  Google Scholar 

  103. Ustrell V, Hoffman L, Pratt G, Rechsteiner M (2002) PA200, a nuclear proteasome activator involved in DNA repair. EMBO J 21(13):3516–3525. doi:10.1093/emboj/cdf333

    CAS  PubMed Central  PubMed  Google Scholar 

  104. Schmidt M, Haas W, Crosas B, Santamaria PG, Gygi SP, Walz T, Finley D (2005) The HEAT repeat protein Blm10 regulates the yeast proteasome by capping the core particle. Nat Struct Mol Biol 12(4):294–303. doi:10.1038/nsmb914, nsmb914 [pii]

    CAS  PubMed  Google Scholar 

  105. Khor B, Bredemeyer AL, Huang CY, Turnbull IR, Evans R, Maggi LB Jr, White JM, Walker LM, Carnes K, Hess RA, Sleckman BP (2006) Proteasome activator PA200 is required for normal spermatogenesis. Mol Cell Biol 26(8):2999–3007. doi:10.1128/MCB.26.8.2999-3007.2006, 26/8/2999 [pii]

    CAS  PubMed Central  PubMed  Google Scholar 

  106. Blickwedehl J, Agarwal M, Seong C, Pandita RK, Melendy T, Sung P, Pandita TK, Bangia N (2008) Role for proteasome activator PA200 and postglutamyl proteasome activity in genomic stability. Proc Natl Acad Sci U S A 105(42):16165–16170. doi:10.1073/pnas.0803145105, 0803145105 [pii]

    CAS  PubMed Central  PubMed  Google Scholar 

  107. Lopez AD, Tar K, Krugel U, Dange T, Ros IG, Schmidt M (2011) Proteasomal degradation of Sfp1 contributes to the repression of ribosome biogenesis during starvation and is mediated by the proteasome activator Blm10. Mol Biol Cell 22(5):528–540. doi:10.1091/mbc.E10-04–0352, mbc.E10-04-0352 [pii]

    CAS  PubMed Central  PubMed  Google Scholar 

  108. Fehlker M, Wendler P, Lehmann A, Enenkel C (2003) Blm3 is part of nascent proteasomes and is involved in a late stage of nuclear proteasome assembly. EMBO Rep 4(10):959–963. doi:10.1038/sj.embor.embor938, embor938 [pii]

    Google Scholar 

  109. Weberruss MH, Savulescu AF, Jando J, Bissinger T, Harel A, Glickman MH, Enenkel C (2013) Blm10 facilitates nuclear import of proteasome core particles. EMBO J. doi:10.1038/emboj.2013.192, emboj2013192 [pii]

    Google Scholar 

  110. Isono E, Nishihara K, Saeki Y, Yashiroda H, Kamata N, Ge L, Ueda T, Kikuchi Y, Tanaka K, Nakano A, Toh-e A (2007) The assembly pathway of the 19S regulatory particle of the yeast 26S proteasome. Mol Biol Cell 18(2):569–580. doi:10.1091/mbc.E06-07-0635, E06-07-0635 [pii]

    Google Scholar 

  111. Tomko RJ Jr, Hochstrasser M (2011) Incorporation of the Rpn12 subunit couples completion of proteasome regulatory particle lid assembly to lid-base joining. Mol Cell 44(6):907–917. doi:10.1016/j.molcel.2011.11.020, S1097-2765(11)00939-7 [pii]

    CAS  PubMed Central  PubMed  Google Scholar 

  112. Takeuchi J, Tamura T (2004) Recombinant ATPases of the yeast 26S proteasome activate protein degradation by the 20S proteasome. FEBS Lett 565(1–3):39–42. doi:10.1016/j.febslet.2004.03.073, S0014579304003783 [pii]

    Google Scholar 

  113. Richmond C, Gorbea C, Rechsteiner M (1997) Specific interactions between ATPase subunits of the 26S protease. J Biol Chem 272(20):13403–13411

    CAS  PubMed  Google Scholar 

  114. Zhang F, Hu M, Tian G, Zhang P, Finley D, Jeffrey PD, Shi Y (2009) Structural insights into the regulatory particle of the proteasome from Methanocaldococcus jannaschii. Mol Cell 34(4):473–484. doi:10.1016/j.molcel.2009.04.021, S1097-2765(09)00274-3 [pii]

    PubMed Central  PubMed  Google Scholar 

  115. Djuranovic S, Hartmann MD, Habeck M, Ursinus A, Zwickl P, Martin J, Lupas AN, Zeth K (2009) Structure and activity of the N-terminal substrate recognition domains in proteasomal ATPases. Mol Cell 34(5):580–590. doi:10.1016/j.molcel.2009.04.030, S1097-2765(09)00306-2 [pii]

    CAS  PubMed  Google Scholar 

  116. Tian G, Park S, Lee MJ, Huck B, McAllister F, Hill CP, Gygi SP, Finley D (2011) An asymmetric interface between the regulatory and core particles of the proteasome. Nat Struct Mol Biol 18(11):1259–1267. doi:10.1038/nsmb.2147, nsmb.2147 [pii]

    Google Scholar 

  117. Park S, Li X, Kim HM, Singh CR, Tian G, Hoyt MA, Lovell S, Battaile KP, Zolkiewski M, Coffino P, Roelofs J, Cheng Y, Finley D (2013) Reconfiguration of the proteasome during chaperone-mediated assembly. Nature 497(7450):512–516. doi:10.1038/nature12123, nature12123 [pii]

    CAS  PubMed  Google Scholar 

  118. Ammelburg M, Frickey T, Lupas AN (2006) Classification of AAA+ proteins. J Struct Biol 156(1):2–11. doi:10.1016/j.jsb.2006.05.002, S1047-8477(06)00165-1 [pii]

    CAS  PubMed  Google Scholar 

  119. DeMartino GN, Proske RJ, Moomaw CR, Strong AA, Song X, Hisamatsu H, Tanaka K, Slaughter CA (1996) Identification, purification, and characterization of a PA700-dependent activator of the proteasome. J Biol Chem 271(6):3112–3118

    Google Scholar 

  120. Watanabe TK, Saito A, Suzuki M, Fujiwara T, Takahashi E, Slaughter CA, DeMartino GN, Hendil KB, Chung CH, Tanahashi N, Tanaka K (1998) cDNA cloning and characterization of a human proteasomal modulator subunit, p27(PSMD9). Genomics 50(2):241–250. doi:10.1006/geno.1998.5301 [pii]

    CAS  PubMed  Google Scholar 

  121. Gorbea C, Taillandier D, Rechsteiner M (2000) Mapping subunit contacts in the regulatory complex of the 26S proteasome. S2 and S5b form a tetramer with ATPase subunits S4 and S7. J Biol Chem 275(2):875–882

    CAS  PubMed  Google Scholar 

  122. Dawson S, Apcher S, Mee M, Higashitsuji H, Baker R, Uhle S, Dubiel W, Fujita J, Mayer RJ (2002) Gankyrin is an ankyrin-repeat oncoprotein that interacts with CDK4 kinase and the S6 ATPase of the 26 S proteasome. J Biol Chem 277(13):10893–10902. doi:10.1074/jbc.M107313200, M107313200 [pii]

    CAS  PubMed  Google Scholar 

  123. Park Y, Hwang YP, Lee JS, Seo SH, Yoon SK, Yoon JB (2005) Proteasomal ATPase-associated factor 1 negatively regulates proteasome activity by interacting with proteasomal ATPases. Mol Cell Biol 25(9):3842–3853. doi:10.1128/MCB.25.9.3842-3853.2005, 25/9/3842 [pii]

    CAS  PubMed Central  PubMed  Google Scholar 

  124. Nakamura Y, Nakano K, Umehara T, Kimura M, Hayashizaki Y, Tanaka A, Horikoshi M, Padmanabhan B, Yokoyama S (2007) Structure of the oncoprotein gankyrin in complex with S6 ATPase of the 26S proteasome. Structure 15(2):179–189. doi:10.1016/j.str.2006.11.015, S0969-2126(07)00028-7 [pii]

    CAS  PubMed  Google Scholar 

  125. Nakamura Y, Umehara T, Tanaka A, Horikoshi M, Padmanabhan B, Yokoyama S (2007) Structural basis for the recognition between the regulatory particles Nas6 and Rpt3 of the yeast 26S proteasome. Biochem Biophys Res Commun 359(3):503–509. doi:10.1016/j.bbrc.2007.05.138, S0006-291×(07)01091-1 [pii]

    Google Scholar 

  126. Le Tallec B, Barrault MB, Guerois R, Carre T, Peyroche A (2009) Hsm3/S5b participates in the assembly pathway of the 19S regulatory particle of the proteasome. Mol Cell 33(3):389–399. doi:10.1016/j.molcel.2009.01.010, S1097-2765(09)00037-9 [pii]

    CAS  PubMed  Google Scholar 

  127. Funakoshi M, Tomko RJ Jr, Kobayashi H, Hochstrasser M (2009) Multiple assembly chaperones govern biogenesis of the proteasome regulatory particle base. Cell 137(5):887–899. doi:10.1016/j.cell.2009.04.061, S0092-8674(09)00526-1 [pii]

    CAS  PubMed Central  PubMed  Google Scholar 

  128. Saeki Y, Toh EA, Kudo T, Kawamura H, Tanaka K (2009) Multiple proteasome-interacting proteins assist the assembly of the yeast 19S regulatory particle. Cell 137(5):900–913. doi:10.1016/j.cell.2009.05.005, S0092-8674(09)00528-5 [pii]

    Google Scholar 

  129. Kaneko T, Hamazaki J, Iemura S, Sasaki K, Furuyama K, Natsume T, Tanaka K, Murata S (2009) Assembly pathway of the Mammalian proteasome base subcomplex is mediated by multiple specific chaperones. Cell 137(5):914–925. doi:10.1016/j.cell.2009.05.008, S0092-8674(09)00565-0 [pii]

    CAS  PubMed  Google Scholar 

  130. Roelofs J, Park S, Haas W, Tian G, McAllister FE, Huo Y, Lee BH, Zhang F, Shi Y, Gygi SP, Finley D (2009) Chaperone-mediated pathway of proteasome regulatory particle assembly. Nature 459(7248):861–865. doi:10.1038/nature08063, nature08063 [pii]

    Google Scholar 

  131. Park S, Roelofs J, Kim W, Robert J, Schmidt M, Gygi SP, Finley D (2009) Hexameric assembly of the proteasomal ATPases is templated through their C termini. Nature 459(7248):866–870. doi:10.1038/nature08065, nature08065 [pii]

    CAS  PubMed Central  PubMed  Google Scholar 

  132. Barrault MB, Richet N, Godard C, Murciano B, Le Tallec B, Rousseau E, Legrand P, Charbonnier JB, Le Du MH, Guerois R, Ochsenbein F, Peyroche A (2012) Dual functions of the Hsm3 protein in chaperoning and scaffolding regulatory particle subunits during the proteasome assembly. Proc Natl Acad Sci U S A 109(17):E1001–E1010. doi:10.1073/pnas.1116538109, 1116538109 [pii]

    PubMed Central  PubMed  Google Scholar 

  133. Lee SH, Moon JH, Yoon SK, Yoon JB (2012) Stable incorporation of ATPase subunits into 19S regulatory particle of human proteasome requires nucleotide binding and C-terminal tails. J Biol Chem 287(12):9269–9279. doi:10.1074/jbc.M111.316208, M111.316208 [pii]

    CAS  PubMed Central  PubMed  Google Scholar 

  134. Hendil KB, Kriegenburg F, Tanaka K, Murata S, Lauridsen AM, Johnsen AH, Hartmann-Petersen R (2009) The 20S proteasome as an assembly platform for the 19S regulatory complex. J Mol Biol 394(2):320–328. doi:10.1016/j.jmb.2009.09.038, S0022-2836(09)01165-6 [pii]

    CAS  PubMed  Google Scholar 

  135. Thompson D, Hakala K, DeMartino GN (2009) Subcomplexes of PA700, the 19S regulator of the 26S proteasome, reveal relative roles of AAA subunits in 26S proteasome assembly and activation and ATPase activity. J Biol Chem 284(37):24891–24903. doi:10.1074/jbc.M109.023218, M109.023218 [pii]

    Google Scholar 

  136. Takagi K, Kim S, Yukii H, Ueno M, Morishita R, Endo Y, Kato K, Tanaka K, Saeki Y, Mizushima T (2012) Structural Basis for Specific Recognition of Rpt1p, an ATPase Subunit of 26S Proteasome, by Proteasome-dedicated Chaperone Hsm3p. J Biol Chem 287(15):12172–12182. doi:10.1074/jbc.M112.345876, M112.345876 [pii]

    CAS  PubMed Central  PubMed  Google Scholar 

  137. Ehlinger A, Park S, Fahmy A, Lary JW, Cole JL, Finley D, Walters KJ (2013) Conformational dynamics of the Rpt6 ATPase in proteasome assembly and Rpn14 binding. Structure 21(5):753–765. doi:10.1016/j.str.2013.02.021, S0969-2126(13)00079-8 [pii]

    CAS  PubMed Central  PubMed  Google Scholar 

  138. Isono E, Saeki Y, Yokosawa H, Toh-e A (2004) Rpn7 Is required for the structural integrity of the 26S proteasome of Saccharomyces cerevisiae. J Biol Chem 279(26):27168–27176. doi:10.1074/jbc.M314231200, M314231200 [pii]

    Google Scholar 

  139. Isono E, Saito N, Kamata N, Saeki Y, Toh EA (2005) Functional analysis of Rpn6p, a lid component of the 26S proteasome, using temperature-sensitive rpn6 mutants of the yeast Saccharomyces cerevisiae. J Biol Chem 280(8):6537–6547. doi:10.1074/jbc.M409364200, M409364200 [pii]

    CAS  PubMed  Google Scholar 

  140. Fukunaga K, Kudo T, Toh-e A, Tanaka K, Saeki Y (2010) Dissection of the assembly pathway of the proteasome lid in Saccharomyces cerevisiae. Biochem Biophys Res Commun 396(4):1048–1053. doi:10.1016/j.bbrc.2010.05.061, S0006-291×(10)00952−6 [pii]

    CAS  PubMed  Google Scholar 

  141. Estrin E, Lopez-Blanco JR, Chacon P, Martin A (2013) Formation of an intricate helical bundle dictates the assembly of the 26S proteasome lid. Structure 21(9):1624–1635. doi:10.1016/j.str.2013.06.023, S0969-2126(13)00247−5 [pii]

    Google Scholar 

  142. Pickering AM, Davies KJ (2012) Degradation of damaged proteins: the main function of the 20S proteasome. Prog Mol Biol Transl Sci 109:227–248. doi:10.1016/B978-0-12-397863-9.00006-7 [pii]

    CAS  PubMed Central  PubMed  Google Scholar 

  143. Russell SJ, Reed SH, Huang W, Friedberg EC, Johnston SA (1999) The 19S regulatory complex of the proteasome functions independently of proteolysis in nucleotide excision repair. Mol Cell 3(6):687–695. doi:10.1016/S1097-2765(01)80001-0 [pii]

    Google Scholar 

  144. Lee D, Ezhkova E, Li B, Pattenden SG, Tansey WP, Workman JL (2005) The proteasome regulatory particle alters the SAGA coactivator to enhance its interactions with transcriptional activators. Cell 123(3):423–436. doi:10.1016/j.cell.2005.08.015, S0092-8674(05)00819-6 [pii]

    CAS  PubMed  Google Scholar 

  145. Eytan E, Ganoth D, Armon T, Hershko A (1989) ATP-dependent incorporation of 20S protease into the 26S complex that degrades proteins conjugated to ubiquitin. Proc Natl Acad Sci U S A 86(20):7751–7755

    Google Scholar 

  146. Lehmann A, Niewienda A, Jechow K, Janek K, Enenkel C (2010) Ecm29 fulfils quality control functions in proteasome assembly. Mol Cell 38(6):879–888. doi:10.1016/j.molcel.2010.06.016, S1097-2765(10)00457-0 [pii]

    CAS  PubMed  Google Scholar 

  147. De LMota-PeynadoA, Lee SY, Pierce BM, Wani P, Singh CR, Roelofs J (2013) The proteasome-associated protein Ecm29 inhibits proteasomal ATPase activity and in vivo protein degradation by the proteasome. J Biol Chem. doi:10.1074/jbc.M113.491662, M113.491662 [pii]

    Google Scholar 

  148. Russell SJ, Steger KA, Johnston SA (1999) Subcellular localization, stoichiometry, and protein levels of 26S proteasome subunits in yeast. J Biol Chem 274(31):21943–21952

    Google Scholar 

  149. Ghaemmaghami S, Huh WK, Bower K, Howson RW, Belle A, Dephoure N, O’Shea EK, Weissman JS (2003) Global analysis of protein expression in yeast. Nature 425(6959):737–741. doi:10.1038/nature02046, nature02046 [pii]

    CAS  PubMed  Google Scholar 

  150. Mannhaupt G, Schnall R, Karpov V, Vetter I, Feldmann H (1999) Rpn4p acts as a transcription factor by binding to PACE, a nonamer box found upstream of 26S proteasomal and other genes in yeast. FEBS Lett 450(1–2):27–34. doi:10.1016/S0014-5793(99)00467−6 [pii]

    CAS  PubMed  Google Scholar 

  151. Xie Y, Varshavsky A (2001) RPN4 is a ligand, substrate, and transcriptional regulator of the 26S proteasome: a negative feedback circuit. Proc Natl Acad Sci U S A 98(6):3056–3061. doi:10.1073/pnas, 07102229898/6/3056 [pii]

    Google Scholar 

  152. Ju D, Xie Y (2004) Proteasomal degradation of RPN4 via two distinct mechanisms, ubiquitin-dependent and -independent. J Biol Chem 279(23):23851–23854. doi:10.1074/jbc.C400111200, C400111200 [pii]

    CAS  PubMed  Google Scholar 

  153. Ju D, Wang L, Mao X, Xie Y (2004) Homeostatic regulation of the proteasome via an Rpn4-dependent feedback circuit. Biochem Biophys Res Commun 321(1):51–57. doi:10.1016/j.bbrc.2004.06.105, S0006-291 × (04)01385-3 [pii]

    CAS  PubMed  Google Scholar 

  154. London MK, Keck BI, Ramos PC, Dohmen RJ (2004) Regulatory mechanisms controlling biogenesis of ubiquitin and the proteasome. FEBS Lett 567(2–3):259–264. doi:10.1016/j.febslet.2004.04.078, S001457930400554X [pii]

    Google Scholar 

  155. Owsianik G, Balzi lL, Ghislain M (2002) Control of 26S proteasome expression by transcription factors regulating multidrug resistance in Saccharomyces cerevisiae. Mol Microbiol 43(5):1295–1308. doi:10.1046/j.1365-2958.2002.02823.x [pii]

    CAS  PubMed  Google Scholar 

  156. Hahn JS, Neef DW, Thiele DJ (2006) A stress regulatory network for co-ordinated activation of proteasome expression mediated by yeast heat shock transcription factor. Mol Microbiol 60(1):240–251. doi:10.1111/j.1365-2958.2006.05097.x, MMI5097 [pii]

    CAS  PubMed  Google Scholar 

  157. Wang X, Xu H, Ju D, Xie Y (2008) Disruption of Rpn4-induced proteasome expression in Saccharomyces cerevisiae reduces cell viability under stressed conditions. Genetics 180(4):1945–1953. doi:10.1534/genetics.108.094524, genetics.108.094524 [pii]

    CAS  PubMed Central  PubMed  Google Scholar 

  158. Meiners S, Heyken D, Weller A, Ludwig A, Stangl K, Kloetzel PM, Kruger E (2003) Inhibition of proteasome activity induces concerted expression of proteasome genes and de novo formation of mammalian proteasomes. J Biol Chem 278(24):21517–21525. doi:10.1074/jbc.M301032200, M301032200 [pii]

    CAS  PubMed  Google Scholar 

  159. Radhakrishnan SK, Lee CS, Young P, Beskow A, Chan JY, Deshaies RJ (2010) Transcription factor Nrf1 mediates the proteasome recovery pathway after proteasome inhibition in mammalian cells. Mol Cell 38(1):17–28. doi:10.1016/j.molcel.2010.02.029, S1097-2765(10)00240-6 [pii]

    CAS  PubMed Central  PubMed  Google Scholar 

  160. Kraft DC, Deocaris CC, Wadhwa R, Rattan SI (2006) Preincubation with the proteasome inhibitor MG-132 enhances proteasome activity via the Nrf2 transcription factor in aging human skin fibroblasts. Ann N Y Acad Sci 1067:420–424. doi:10.1196/annals.1354.060, 1067/1/420 [pii]

    Google Scholar 

  161. Kapeta S, Chondrogianni N, Gonos ES (2010) Nuclear erythroid factor 2-mediated proteasome activation delays senescence in human fibroblasts. J Biol Chem 285(11):8171–8184. doi:10.1074/jbc.M109.031575, M109.031575 [pii]

    CAS  PubMed Central  PubMed  Google Scholar 

  162. Xie Y (2010) Structure, assembly and homeostatic regulation of the 26S proteasome. J Mol Cell Biol 2(6):308–317. doi:10.1093/jmcb/mjq030, mjq030 [pii]

    CAS  PubMed  Google Scholar 

  163. Xu H, Fu J, Ha SW, Ju D, Zheng J, Li L, Xie Y (2012) The CCAAT box-binding transcription factor NF-Y regulates basal expression of human proteasome genes. Biochim Biophys Acta 1823(4):818–825. doi:10.1016/j.bbamcr.2012.01.002, S0167-4889(12)00004-3 [pii]

    CAS  PubMed  Google Scholar 

  164. Reits EA, Benham AM, Plougastel B, Neefjes J, Trowsdale J (1997) Dynamics of proteasome distribution in living cells. EMBO J 16(20):6087–6094. doi:10.1093/emboj/16.20.6087

    Google Scholar 

  165. Enenkel C, Lehmann A, Kloetzel PM (1998) Subcellular distribution of proteasomes implicates a major location of protein degradation in the nuclear envelope-ER network in yeast. EMBO J 17(21):6144–6154. doi:10.1093/emboj/17.21.6144

    CAS  PubMed Central  PubMed  Google Scholar 

  166. Wilkinson CR, Wallace M, Morphew M, Perry P, Allshire R, Javerzat JP, McIntosh JR, Gordon C (1998) Localization of the 26S proteasome during mitosis and meiosis in fission yeast. EMBO J 17(22):6465–6476. doi:10.1093/emboj/17.22.6465

    CAS  PubMed Central  PubMed  Google Scholar 

  167. Tanaka K, Yoshimura T, Tamura T, Fujiwara T, Kumatori A, Ichihara A (1990) Possible mechanism of nuclear translocation of proteasomes. FEBS Lett 271 (1–2):41–46. doi:10.1016/0014-5793(90)80367-R [pii]

    CAS  PubMed  Google Scholar 

  168. Nederlof PM, Wang HR, Baumeister W (1995) Nuclear localization signals of human and Thermoplasma proteasomal alpha subunits are functional in vitro. Proc Natl Acad Sci U S A 92(26):12060–12064

    CAS  PubMed Central  PubMed  Google Scholar 

  169. Wendler P, Lehmann A, Janek K, Baumgart S, Enenkel C (2004) The bipartite nuclear localization sequence of Rpn2 is required for nuclear import of proteasomal base complexes via karyopherin alphabeta and proteasome functions. J Biol Chem 279(36):37751–37762. doi:10.1074/jbc.M403551200, M403551200 [pii]

    CAS  PubMed  Google Scholar 

  170. Savulescu AF, Shorer H, Kleifeld O, Cohen I, Gruber R, Glickman MH, Harel A (2011) Nuclear import of an intact preassembled proteasome particle. Mol Biol Cell 22(6):880–891. doi:10.1091/mbc.E10-07-0595, mbc.E10-07-0595 [pii]

    CAS  PubMed Central  PubMed  Google Scholar 

  171. Wang HR, Kania M, Baumeister W, Nederlof PM (1997) Import of human and Thermoplasma 20S proteasomes into nuclei of HeLa cells requires functional NLS sequences. Eur J Cell Biol 73(2):105–113

    Google Scholar 

  172. Mayr J, Wang HR, Nederlof P, Baumeister W (1999) The import pathway of human and Thermoplasma 20S proteasomes into HeLa cell nuclei is different from that of classical NLS-bearing proteins. Biol Chem 380(10):1183–1192. doi:10.1515/BC.1999.150

    CAS  PubMed  Google Scholar 

  173. Lehmann A, Janek K, Braun B, Kloetzel PM, Enenkel C (2002) 20S proteasomes are imported as precursor complexes into the nucleus of yeast. J Mol Biol 317(3):401–413. doi:10.1006/jmbi.2002.5443, S0022283602954434 [pii]

    CAS  PubMed  Google Scholar 

  174. Huh WK, Falvo JV, Gerke LC, Carroll AS, Howson RW, Weissman JS, O’Shea EK (2003) Global analysis of protein localization in budding yeast. Nature 425(6959):686–691. doi:10.1038/nature02026, nature02026 [pii]

    CAS  PubMed  Google Scholar 

  175. Laporte D, Salin B, Daignan-Fornier B, Sagot I (2008) Reversible cytoplasmic localization of the proteasome in quiescent yeast cells. J Cell Biol 181(5):737–745. doi:10.1083/jcb.200711154, jcb.200711154 [pii]

    CAS  PubMed Central  PubMed  Google Scholar 

  176. Saunier R, Esposito M, Dassa EP, Delahodde A (2013) Integrity of the Saccharomyces cerevisiae Rpn11 protein is critical for formation of proteasome storage granules (PSG) and survival in stationary phase. PLoS ONE 8(8):e70357. doi:10.1371/journal.pone.0070357, PONE-D-13-16012 [pii]

    CAS  PubMed Central  PubMed  Google Scholar 

  177. Stefanovic S, Hegde RS (2007) Identification of a targeting factor for posttranslational membrane protein insertion into the ER. Cell 128(6):1147–1159. doi:10.1016/j.cell.2007.01.036, S0092-8674(07)00195-X [pii]

    CAS  PubMed  Google Scholar 

  178. Schuldiner M, Metz J, Schmid V, Denic V, Rakwalska M, Schmitt HD, Schwappach B, Weissman JS (2008) The GET complex mediates insertion of tail-anchored proteins into the ER membrane. Cell 134(4):634–645. doi:10.1016/j.cell.2008.06.025, S0092-8674(08)00777-0 [pii]

    CAS  PubMed Central  PubMed  Google Scholar 

  179. Belote JM, Zhong L (2009) Duplicated proteasome subunit genes in Drosophila and their roles in spermatogenesis. Heredity 103(1):23–31. doi:10.1038/hdy.2009.23, hdy200923 [pii]

    Google Scholar 

  180. Fu H, Doelling JH, Arendt CS, Hochstrasser M, Vierstra RD (1998) Molecular organization of the 20S proteasome gene family from Arabidopsis thaliana. Genetics 149(2):677–692

    CAS  PubMed Central  PubMed  Google Scholar 

  181. Yang P, Fu H, Walker J, Papa CM, Smalle J, Ju YM, Vierstra RD (2004) Purification of the Arabidopsis 26S proteasome: biochemical and molecular analyses revealed the presence of multiple isoforms. J Biol Chem 279(8):6401–6413. doi:10.1074/jbc.M311977200, M311977200 [pii]

    CAS  PubMed  Google Scholar 

  182. Zhong L, Belote JM (2007) The testis-specific proteasome subunit Prosalpha6T of D. melanogaster is required for individualization and nuclear maturation during spermatogenesis. Development 134(19):3517–3525. doi:10.1242/dev.004770, dev.004770 [pii]

    CAS  PubMed  Google Scholar 

  183. Book AJ, Smalle J, Lee KH, Yang P, Walker JM, Casper S, Holmes JH, Russo LA, Buzzinotti ZW, Jenik PD, Vierstra RD (2009) The RPN5 subunit of the 26S proteasome is essential for gametogenesis, sporophyte development, and complex assembly in Arabidopsis. Plant Cell 21(2):460–478. doi:10.1105/tpc.108.064444, tpc.108.064444 [pii]

    CAS  PubMed Central  PubMed  Google Scholar 

  184. Lee KH, Minami A, Marshall RS, Book AJ, Farmer LM, Walker JM, Vierstra RD (2011) The RPT2 subunit of the 26S proteasome directs complex assembly, histone dynamics, and gametophyte and sporophyte development in Arabidopsis. Plant Cell 23(12):4298–4317. doi:10.1105/tpc.111.089482, tpc.111.089482 [pii]

    CAS  PubMed Central  PubMed  Google Scholar 

  185. Sonoda Y, Sako K, Maki Y, Yamazaki N, Yamamoto H, Ikeda A, Yamaguchi J (2009) Regulation of leaf organ size by the Arabidopsis RPT2a 19S proteasome subunit. Plant J 60(1):68–78. doi:10.1111/j.1365-313X.2009.03932.x, TPJ3932 [pii]

    CAS  PubMed  Google Scholar 

  186. Griffin TA, Nandi D, Cruz M, Fehling HJ, Kaer LV, Monaco JJ, Colbert RA (1998) Immunoproteasome assembly: cooperative incorporation of interferon gamma (IFN-gamma)-inducible subunits. J Exp Med 187(1):97–104

    Google Scholar 

  187. Groettrup M, Standera S, Stohwasser R, Kloetzel PM (1997) The subunits MECL-1 and LMP2 are mutually required for incorporation into the 20S proteasome. Proc Natl Acad Sci U S A 94(17):8970–8975

    CAS  PubMed Central  PubMed  Google Scholar 

  188. Kingsbury DJ, Griffin TA, Colbert RA (2000) Novel propeptide function in 20S proteasome assembly influences beta subunit composition. J Biol Chem 275 (31):24156–24162. doi:10.1074/jbc.M001742200, M001742200 [pii]

    CAS  PubMed  Google Scholar 

  189. De M, Jayarapu K, Elenich L, Monaco JJ, Colbert RA, Griffin TA (2003) Beta 2 subunit propeptides influence cooperative proteasome assembly. J Biol Chem 278(8):6153–6159. doi:10.1074/jbc.M209292200, M209292200 [pii]

    CAS  PubMed  Google Scholar 

  190. Heink S, Ludwig D, Kloetzel PM, Kruger E (2005) IFN-gamma-induced immune adaptation of the proteasome system is an accelerated and transient response. Proc Natl Acad Sci U S A 102(26):9241–9246. doi:10.1073/pnas.0501711102, 0501711102 [pii]

    CAS  PubMed Central  PubMed  Google Scholar 

  191. Lee SC, Shaw BD (2007) A novel interaction between N-myristoylation and the 26S proteasome during cell morphogenesis. Mol Microbiol 63(4):1039–1053. doi:10.1111/j.1365-2958.2006.05575.x, MMI5575 [pii]

    CAS  PubMed  Google Scholar 

  192. Gomes AV, Young GW, Wang Y, Zong C, Eghbali M, Drews O, Lu H, Stefani E, Ping P (2009) Contrasting proteome biology and functional heterogeneity of the 20S proteasome complexes in mammalian tissues. Mol Cell Proteomics 8(2):302–315. doi:10.1074/mcp.M800058-MCP200, M800058-MCP200 [pii]

    CAS  PubMed Central  PubMed  Google Scholar 

  193. Porollo A, Meller J (2007) Versatile annotation and publication quality visualization of protein complexes using POLYVIEW-3D. BMC Bioinformatics 8:316. doi:10.1186/1471-2105-8-316, 1471-2105-8-316 [pii]

    PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew R. Kusmierczyk .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Kusmierczyk, A. (2014). The Biogenesis of the Eukaryotic Proteasome. In: Houry, W. (eds) The Molecular Chaperones Interaction Networks in Protein Folding and Degradation. Interactomics and Systems Biology, vol 1. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1130-1_13

Download citation

Publish with us

Policies and ethics