Skip to main content
Log in

Neuronal and glial tau-positive inclusions in diverse neurologic diseases share common phosphorylation characteristics

  • Regular Paper
  • Published:
Acta Neuropathologica Aims and scope Submit manuscript

Abstract

Tau accumulating as paired helical filaments (PHF) in Alzheimer's disease brain is considered to be abnormally phosphorylated on distinct sites. To compare the phosphorylation state of tau-positive neuronal inclusions among diverse neurologic diseases, we have probed these lesions with three well-defined PHF/tau monoclonals, C5, M4 and tau 1, that most likely recognize three proline-directed phosphorylation sites in PHF-tau. In Alzheimer's disease brain all three monoclonals intensely immunostained intracellular neurofibrillary tangles, neuropil threads, senile plaque neurites, and “pretangle neurons” in a phosphorylation-dependent manner. They also stained, in the same manner, Pick bodies in Pick's disease, and neurofibrillary tangles and neuropil threads in various tangle-forming neurologic diseases. In most of these diseases (including Pick's disease, progressive supranuclear palsy, subacute sclerosing panencephalitis, and Alzheimer's disease) astrocytes and oligodendrocytes were found to contain tau-positive inclusions which showed the same immunocytochemical characteristics. Thus, the widely occurring tau-positive inclusions share common phosphorylation characteristics irrespective of underlying diseases or cell types.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bancher C, Brunner C, Lassmann H, Budka H, Jellinger K, Wiche G, Seitelberger F, Grundke-Iqbal K, Iqbal K, Wisniewski HM (1989) Accumulation of abnormally phosphorylated τ precedes the formation of neurofibrillary tangles in Alzheimer's disease. Brain Res 477: 90–99

    Google Scholar 

  2. Biernat J, Mandelkow E-M, Schröter C, Lichtenberg-Kraag B, Steiner B, Berling B, Meyer H, Mercken M, Vandermeeren A, Goedert M, Mandelkow E (1992) The switch of tau protein to an Alzheimer-like state includes the phosphorylations of two serine-proline motifs upstream of the microtubule binding region. EMBO J 11: 1593–1597

    Google Scholar 

  3. Binder LI, Frankfurter A, Rebhun LI (1985) The distribution of tau in the mammalian central nervous system. J Cell Biol 101: 1371–1378

    Google Scholar 

  4. Drewes G, Lichtenberg-Kraag B, Doring F, Mandelkow E-M, Biernat J, Goris J, Doree M, Mandelkow E (1992) Mitogen activated protein (MAP) kinase transforms tau protein into an Alzheimer-like state. EMBO J 11: 2131–2138

    Google Scholar 

  5. Eidelberg D, Sotrel A, Joachim C, Selkoe D, Forman A, Pendlebury WW, Perl DP (1987) Adult onset Hallervorden-Spatz disease with neurofibrillary pathology. A discrete clinicopathological entity. Brain 110: 993–1013

    Google Scholar 

  6. Flament S, Delacourte A, Verny M, Hauw J-J, Javoy-Agid F (1991) Abnormal tau proteins in progressive supranuclear palsy. Similarities and differences with the neurofibrillary degeneration of the Alzheimer type. Acta Neuropathol 81: 591–596

    Google Scholar 

  7. Goedert M, Spillantini MG, Jakes R, Rutherford D, Crowther RA (1989) Multiple isoforms of human microtubule-associated protein tau: sequence and localization in neurofibrillary tangles of Alzheimer's disease. Neuron 3: 519–526

    Google Scholar 

  8. Hasegawa M, Morishima-Kawashima M, Takio K, Suzuki M, Titani K, Ihara Y (1992) Protein sequence and mass spectrometric analyses of tau in the Alzheimer's disease brain. J Biol Chem 267: 17047–17054

    Google Scholar 

  9. Hasegawa M, Watanabe A, Takio K, Suzuki M, Arai T, Titani K, Ihara Y (1993) Characterization of two distinct monoclonal antibodies to paired helical filaments (PHF): further evidence for fetal-type phosphorylation of the tau in paired helical filaments. J Neurochem 60: 2068–2077

    Google Scholar 

  10. Hellmich MR, Pant HC, Wada E, Battey JF (1992) Neuronal cdc2-like kinase: a cdc2-related protein kinase with predominantly neuronal expression. Proc Natl Acad Sci USA 89: 10867–10871

    Google Scholar 

  11. Ishiguro K, Takamatsu M, Tomizawa K, Omori A, Takahashi M, Arioka M, Uchida T, Imahori K (1992) Tau protein kinase I converts normal tau protein into A68-like component of paired helical filaments. J Biol Chem 267: 10897–10901

    Google Scholar 

  12. Joachim CL, Morris JH, Kosik KS, Selkoe DJ (1987) Tau antisera recognize neurofibrillary tangles in a range of neurodegenerative disorders. Ann Neurol 22: 514–520

    Google Scholar 

  13. Kanai Y, Takemura RE, Oshima T, Mori H, Ihara Y, Yanagisawa M, Masaki T, Hirokawa N (1989) Expression of multiple tau isoforms and microtubule bundle formation in fibroblasts transfected with a single tau cDNA. J Cell Biol 109: 1173–1184

    Google Scholar 

  14. Kanemaru K, Takio K, Miura R, Titani K, Ihara Y (1992) Fetal-type phosphorylation of the τ in paired helical filaments. J Neurochem 58: 1667–1675

    Google Scholar 

  15. Kidd M (1963) Paired helical filaments in electron microscopy of Alzheimer's disease. Nature 197: 192–193

    Google Scholar 

  16. Kosik KS, Orecchio LD, Binder LI, Trojanowski JQ, Lee VM-Y, Lee G (1988) Epitopes that span the tau molecule are shared with paired helical filaments. Neuron 1: 817–825

    Google Scholar 

  17. Kumpulainen T, Dahl D, Korhonen K, Nystrom SHM (1983) Immunolabeling of carbonic anhydrase isoenzyme C and glial fibrillary acidic protein in paraffin-embedded tissue sections of human brain and retina. J Histochem Cytochem 31: 879–886

    Google Scholar 

  18. Lee VM-Y, Balin BJ, Otvos L, Trojanowski JQ (1991) A68; a major subunit of paired helical filaments and derivatized forms of normal tau. Science 251: 675–678

    Google Scholar 

  19. Love S, Saitoh T, Quijada S, Cole GM, Terry RD (1988) Alz-50, ubiquitin and tau immunoreactivity of neurofibrillary tangles, Pick bodies and Lewy bodies. J Neuropathol Exp Neurol 47: 393–405

    Google Scholar 

  20. Mandelkow E-M, Drewes G, Biernat J, Gustke N, Lint JV, Vandenheede JR, Mandelkow E (1992) Glycogen synthase kinase-3 and the Alzheimer-like state of microtubule-associated protein tau. FEBS Lett 314: 315–321

    Google Scholar 

  21. Migheli A, Butler M, Brown K, Shelanski ML (1988) Light and electron microscope localization of the microtubule-associated tau protein in rat brain. J Neurosci 8: 1846–1851

    Google Scholar 

  22. Nakano I, Iwatsubo T, Otsuka N, Kamei M, Matsumura K, Mannen T (1992) Paired helical filaments in astrocytes: electron microscopy and immunohistochemistry in a case of atypical Alzheimer's disease. Acta Neuropathol 83: 228–232

    Google Scholar 

  23. Nishimura M, Namba Y, Ikeda K, Oda M (1992) Glial fibrillary tangles with straight tubules in the brains of patients with PSP. Neurosci Lett 143: 35–38

    Google Scholar 

  24. Papasozomenos SC (1989) Tau protein immunoreactivity in dementia of the Alzheimer type. II. Electron microscopy and pathogenetic implications. Lab Invest 60: 375–389

    Google Scholar 

  25. Papasozomenos SC, Binder LI (1987) Phosphorylation determines two distinct species of tau in the central nervous system. Cell Motil Cytoskeleton 8: 210–226

    Google Scholar 

  26. Probst A, Langui D, Lautenschlager C, Ulrich J, Brion JP, Anderton BH (1988) Progressive supranuclear palsy; extensive neuropil threads in addition to neurofibrillary tangles. Very similar antigenicity of subcortical neuronal pathology in progressive supranuclear palsy and Alzheimer's disease. Acta Neuropathol 77: 61–68

    Google Scholar 

  27. Rasool CG, Selkoe DJ (1985) Sharing of specific antigens by degenerating neurons in Pick's disase and Alzheimer's disease. N Engl J Med 312: 700–705

    Google Scholar 

  28. Roberts GW (1988) Immunocytochemistry of neurofibrillary tangles in dementia pugilistica and Alzheimer's disease: evidence for common genesis. Lancet II: 1456–1458

    Google Scholar 

  29. Schmidt ML, Lee VM-Y, Hurtig H, Trojanowski JQ (1988) Properties of antigenic determinants that distinguish neurofibrillary tangles in progressive supranuclear palsy and Alzheimer's disease. Lab Invest 59: 460–466

    Google Scholar 

  30. Shankar SK, Yanagihara R, Garruto RM, Grundke-Iqbal I, Kosik K, Gajdusek C (1989) Immunocytochemical characterization of neurofibrillary tangles in amyotrophic lateral sclerosis and parkinsonism-dementia of Guam. Ann Neurol 25: 146–151

    Google Scholar 

  31. Shin R-W, Iwaki T, Kitamoto T, Tateishi J (1991) Hydrated autoclave pretreatment enhances tau immunoreactivity in formalin-fixed normal and Alzheimer's disease brain tissues. Lab Invest 64: 693–702

    Google Scholar 

  32. Tabaton M, Mandybur TL, Perry G, Onorato M, Autilio-Gambetti L, Gambetti P (1989) The widespread alteration of neurites in Alzheimer's disease may be unrelated to amyloid deposition. Ann Neurol 26: 771–778

    Google Scholar 

  33. Terry RD, Gonatas NK, Weiss M (1964) Ultrastructural studies in Alzheimer's presenile dementia. Am J Pathol 44: 269–297

    Google Scholar 

  34. Watanabe A, Hasegawa M, Suzuki M, Takio K, Morishima-Kawashima M, Titani K, Arai T, Kosik KS, Ihara Y (1993) In vivo phosphorylation sites in fetal and adult rat tau. J Biol Chem 268: 257/2–257/7

    Google Scholar 

  35. Weingarten MD, Lockwood AH, Hwo S-Y, Kirschner MW (1975) A protein factor essential for microtubule assembly. Proc Natl Acad Sci USA 72: 1858–1862

    Google Scholar 

  36. Wille H, Drewes G, Biernat J, Mandelkow E-M, Mandelkow E (1992) Alzheimer-like paired helical filaments and antiparallel dimers formed from microtubule-associated protein tau in vitro. J Cell Biol 118: 573–584

    Google Scholar 

  37. Wisniewski K, Jervis GA, Moretz RC, Wisniewski HM (1979) Alzheimer neurofibrillary tangles in diseases other than senile and presenile dementia. Ann Neurol 5: 288–294

    Google Scholar 

  38. Yamada T, McGeer PL (1990) Oligodendroglial microtubular masses: an abnormality observed in some human neurodegenerative diseases. Neurosci Lett 120: 163–166

    Google Scholar 

  39. Yamada T, McGeer PL, McGeer EG (1992) Appearance of paired nucleated, tau-positive glia in patients with progressive supranuclear palsy brain tissue. Neurosci Lett 135: 99–102

    Google Scholar 

  40. Yamada T, Calne DB, Akiyama H, McGeer EG, McGeer PL (1993) Further observations on tau-positive glia in the brains with progressive supranuclear palsy. Acta Neuropathol 85: 308–315

    Google Scholar 

  41. Yoshida H, Ihara Y (1993) τ in paired helical filaments (PHF) is functionally distinct from fetal tau: assembly incompetence of PHF-tau. J Neurochem 61: 1183–1186

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Supported by Grants-in-Aid for Specially Promoted Reseach (no. 03102008) and for Scientific Research on Priority Areas (no. 05261203 and 05251205) from the Ministry of Education, Science and Culture, and a Grant-in-Aid for Scientific Research from the Ministry of Health and Welfare, Japan

Rights and permissions

Reprints and permissions

About this article

Cite this article

Iwatsubo, T., Hasegawa, M. & Ihara, Y. Neuronal and glial tau-positive inclusions in diverse neurologic diseases share common phosphorylation characteristics. Acta Neuropathol 88, 129–136 (1994). https://doi.org/10.1007/BF00294505

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00294505

Key words

Navigation