Skip to main content
Log in

TFS1: A suppressor of cdc25 mutations in Saccharomyces cerevisiae

  • Published:
Molecular and General Genetics MGG Aims and scope Submit manuscript

Summary

The TFS1 gene of Saccharomyces cerevisiae is a dosage-dependent suppressor of cdc25 mutations. Overexpression of TFS1 does not alleviate defects of temperature-sensitive adenylyl cyclase (cdc35) or ras2 disruption mutations. The ability of TFS1 to suppress cdc25 is allele specific: the temperature-sensitive cdc25-1 mutation is suppressed efficiently but the cdc25-5 mutation and two disruption mutations are only partially suppressed. TFS1 maps to a previously undefined locus on chromosome XII between RDN1 and CDC42. The DNA sequence of TFS1 contains a single long open reading frame encoding a 219 amino acid polypeptide that is similar in sequence to two mammalian brain proteins. Insertion and deletion mutations in TFS1 are haploviable, indicating that TFS1 is not essential for growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adari H, Lowy DR, Willumsen BM, Der CJ, McCormick F (1988) Guanosine triphosphatase activating protein (GAP) interacts with the p21 ras effector binding domain. Science 240:518–521

    Google Scholar 

  • Birnboim HC, Doly J (1979) A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic Acids Res 7:1513–1523

    Google Scholar 

  • Bissinger PH, Wieser R, Hamilton B, Ruis H (1989) Control of Saccharomyces cerevisiae catalase T gene (CTT1) expression by nutrient supply via the RAS-cyclic AMP pathway. Mol Cell Biol 9:1309–1315

    Google Scholar 

  • Breviario D, Hinnebusch A, Cannon J, Tatchell K, Dhar R (1986) Carbon source regulation of RAS1 expression in Saccharomyces cerevisiae and the phenotypes of ras2 cells. Proc Natl Acad Sci USA 83:4152–4156

    Google Scholar 

  • Broach JR (1991) RAS genes in Saccharomyces cerevisiae: signal transduction in search of a pathway. Trends Genet 7:28–33

    Google Scholar 

  • Broek D, Toda T, Michaeli T, Levin L, Birchmeier C, Zoller M, Powers S, Wigler M (1987) The S. cerevisiae CDC25 gene product regulates the RAS/adenylate cyclase pathway. Cell 48:789–799

    Google Scholar 

  • Camonis JH, Jacquet M (1988) A new RAS mutation that suppresses the CDC25 gene requirement for growth of Saccharomyces cerevisiae. Mol Cell Biol 8:2980–2983

    Google Scholar 

  • Cannon JF, Gibbs JB, Tatchell K (1986) Suppressors of the ras2 mutation of Saccharomyces cerevisiae. Genetics 113:247–264

    Google Scholar 

  • Carle GF, Olson MV (1985) An electrophoretic karyotype for yeast. Proc Natl Acad Sci USA 82:3756–3760

    Google Scholar 

  • Crechet JB, Poullet P, Mistou MY, Parmeggiani A, Camonis J, Boy-Marcotte E, Damak F, Jacquet M (1990) Enhancement of the GDP-GTP exchange of RAS proteins by the carboxyterminal domain of SDC25. Science 248:866–868

    Google Scholar 

  • Damak F, Boy-Marcotte E, Le-Roscouet D, Guilbaud R, Jacquet M (1991) SDC25, a CDC25-like gene which contains a RAS-activating domain and is a dispensable gene of Saccharomyces cerevisiae. Mol Cell Biol 11:202–212

    Google Scholar 

  • Devereux J, Haeberli P, Smithies O (1984) A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res 12:387–395

    Google Scholar 

  • Engelberg D, Simchen G, Levitzki A (1990) In vitro reconstitution of CDC25 regulated S. cerevisiae adenylyl cyclase and its kinetic properties. EMBO J 9:641–651

    Google Scholar 

  • Fantes PA (1981) Isolation of cell size mutants of a fission yeast by a new selective method: characterization of mutants and implications for division control mechanism. J Bacteriol 146:746–754

    Google Scholar 

  • Garreau H, Camonis JH, Guitton C, Jacquet M (1990) The Saccharomyces cerevisiae CDC25 gene product is a 180 kDa polypeptide and is associated with a membrane fraction. FEBS Lett 269:53–59

    Google Scholar 

  • Grandy DK, Hanneman E, Bunzow J, Shih M, Machida CA, Bidlack JM, Civelli O (1990) Purification, cloning, and tissue distribution of a 23-kDa rat protein isolated by morphine affinity chromatography. Mol Endocrinol 4:1370–1376

    Google Scholar 

  • Guarente L (1983) Yeast promoters and lacZ fusions designed to study expression of cloned genes in yeast. Methods Enzymol 101:181–191

    Google Scholar 

  • Henikoff S (1984) Unidirectional digestion with exonuclease III creates targeted breakpoints for DNA sequencing. Gene 28:351–359

    Google Scholar 

  • Hill JE, Myers AM, Koerner TJ, Tzagoloff A (1986) Yeast/E. coli shuttle vectors with multiple unique restriction sites. Yeast 2:163–167

    Google Scholar 

  • Holmes DS, Quigley M (1981) A rapid boiling method for the preparation of bacterial plasmids. Anal Biochem 114:193–197

    Google Scholar 

  • Ito H, Fukuda Y, Murata K, Kimura A (1983) Transformation of intact yeast cells treated with alkali cations. J Bacteriol 153:163–168

    Google Scholar 

  • Johnson DI, Jacobs CW, Pringle JR, Robinson LC, Carle GF, Olson MV (1987) Mapping of the Saccharomyces cerevisiae CDC3, CDC25, and CDC42 genes to chromosome XII by chromosome blotting and tetrad analysis. Yeast 3:243–253

    Google Scholar 

  • Jones S, Vignais M-L, Broach J (1991) The CDC25 protein of S. cerevisiae promotes exchange of guanine nucleotide bound to Ras. Mol Cell Biol 11:2641–2646

    Google Scholar 

  • Lindquist S (1981) Regulation of protein synthesis during heat shock. Nature 293:311–314

    Google Scholar 

  • Liesziewicz J, Goadeny A, Forster H-H, Küntzel H (1987) Isolation and nucleotide sequence of a Saccharomyces cerevisiae protein kinase gene suppressing the cell cycle start mutation cdc25. J Biol Chem 262:2549–2553

    Google Scholar 

  • Maniatis T, Fritsch EF, Sambrook J (1982) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY

    Google Scholar 

  • Marshall MS, Gibbs JB, Scolnick EM, Sigal IS (1987) Regulatory function of the Saccharomyces cerevisiae RAS C-terminus. Mol Cell Biol 7:2309–2315

    Google Scholar 

  • Mbonyi K, Buellens M, Detremerie K, Geerts L, Thevelein JM (1988) Requirement of one functional RAS gene and inability of an oncogenic ras variant to mediate the glucose-induced cyclic AMP signal in the yeast Saccharomyces cerevisiae. Mol Cell Biol 8:3051–3057

    Google Scholar 

  • Messing J (1983) New M13 vectors for cloning. Methods Enzymol 101:20–78

    Google Scholar 

  • Mitts MR, Grant DB, Heideman W (1990) Adenylate cyclase in Saccharomyces cerevisiae is a peripheral membrane protein. Mol Cell Biol 10:3873–3883

    Google Scholar 

  • Mortimer RK, Schild D, Contopoulou CR, Kans JA (1989) Genetic map of Saccharomyces cerevisiae, Edition 10. Yeast 5:321–403

    Google Scholar 

  • Munder T, Küntzel H (1989) Glucose-induced cAMP signaling in Saccharomyces cerevisiae is mediated by the CDC25 protein. FEBS Lett 242:341–345

    Google Scholar 

  • Petitjean A, Hilger F, Tatchell K (1990) Comparison of thermosensitive alleles of the cdc25 gene involved in the cAMP metabolism of Saccharomyces cerevisiae. Genetics 124:797–806

    Google Scholar 

  • Powers S, O'Neill K, Wigler M (1989) Dominant yeast and mammalian RAS mutants that interfere with the CDC25-dependent activation of wild-type RAS in Saccharomyces cerevisiae. Mol Cell Biol 9:390–395

    Google Scholar 

  • Rigby PWJ, Dieckmann M, Rhodes C, Berg P (1977) Labeling deoxyribonucleic acid to high specific activity in vitro by nick translation with DNA polymerase I. J Mol Biol 113:237–251

    Google Scholar 

  • Robinson LC, Gibbs JB, Marshall M, Sigal IS, Tatchell K (1987) CDC25: a component of the RAS-adenylate cyclase pathway in Saccharomyces cerevisiae. Science 235:1218–1221

    Google Scholar 

  • Sanger F, Nicklen S, Coulsen AR (1977) DNA sequencing with chain terminating inhibitors. Proc Natl Acad Sci USA 74:5463–5469

    Google Scholar 

  • Schoentgen F, Saccoccio F, Jolles J, Bernier I, Jolles P (1987) Complete amino acid sequence of a basic 21-kDa protein from bovine brain cytosol. Eur J Biochem 166:333–338

    Google Scholar 

  • Sherman F, Fink GR, Hicks JB (1986) Methods in yeast genetics. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY

    Google Scholar 

  • Struhl K (1985) Naturally occurring poly (dA-dT) sequences are upstream promoter elements for constitutive transcription in yeast. Proc Natl Acad Sci USA 82:8410–8423

    Google Scholar 

  • Sullivan MA, Cannon JF, Webb FH, Bock RM (1985) Antisuppressor mutation in Escherichia coli defective in biosynthesis of 5-methylaminomethyl-2-thiouridine. J Bacteriol 161:368–376

    Google Scholar 

  • Tanaka K, Nakafuku M, Satoh T, Marshall MS, Gibbs JB, Matsumoto K, Kaziro Y, Toh-e A (1990) S. cerevisiae genes IRA1 and IRA2 encode proteins that may be functionally equivalent to mammalian ras GTPase activating protein. Cell 60:803–807

    Google Scholar 

  • Tanaka K, Lin BK, Wood DR, Tamanoi F (1991) IRA2, an upstream negative regulator of RAS in yeast, is a RAS GTPase-activating protein. Proc Natl Acad Sci USA 88:468–472

    Google Scholar 

  • Tatchell K, Nasmyth KA, Hall BD, Astell C, Smith M (1981) In vitro mutation analysis of the mating-type locus in yeast. Cell 27:25–35

    Google Scholar 

  • Tatchell K, Chaleff D, DeFeo-Jones D, Scolnick E (1984) Requirement of either of a pair of ras-related genes of Saccharomyces cerevisiae for cell viability. Nature 309:523–527

    Google Scholar 

  • Toda T, Cameron S, Sass P, Zoller M, Wigler M (1987) Three different genes in S. cerevisiae encode the catalytic subunits of the CAMP-dependent protein kinase. Cell 50:277–287

    Google Scholar 

  • Trahey M, McCormick F (1987) A cytoplasmic protein stimulates normal N-ras p21 GTPase but does not affect oncogenic mutants. Science 238:542–545

    Google Scholar 

  • Tripp ML, Pinon R (1988) Identification of a 31 kDa protein in Saccharomyces cerevisiae whose phosphorylation is controlled negatively by the CDC25 gene product. J Gen Microbiol 134:2481–2496

    Google Scholar 

  • Tripp ML, Bouchard RA, Pinon R (1989) Cloning and characterization of NSP1, a locus encoding a component of a CDC25-dependent nutrient-responsive pathway in Saccharomyces cerevisiae. Mol Microbiol 3:1319–1327

    Google Scholar 

  • van der Platt JB, van Solingen P (1974) Cyclic 3′,5′-adenosine monophosphate stimulates trehalose degradation in bakers yeast. Biochem Biophys Res Commun 56:580–587

    Google Scholar 

  • Vanoni M, Vavassori M, Frascotti G, Martegani E, Alberghina L (1990) Overexpression of the CDC25 gene, an upstream element of the RAS-adenylyl cyclase pathway in Saccharomyces cerevisiae, allows immunological identification and characterization of its gene product. Biochem Biophys Res Commun 72:61–69

    Google Scholar 

  • Wahl GM, Stern M, Stark G (1979) Efficient transfer of large DNA fragments from agarose gels to diazobenzyloxymethyl paper and rapid hybridization by using dextran sulfate. Proc Natl Acad Sci USA 76:3683–3687

    Google Scholar 

  • Winston F, Chumley F, Fink GR (1983) Eviction and transplacement of mutant genes in yeast. Methods Enzymol 101:211–228

    Google Scholar 

  • Zaret KS, Sherman F (1982) DNA sequence required for efficient transcription termination in yeast. Cell 28:563–573

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Robinson, L.C., Tatchell, K. TFS1: A suppressor of cdc25 mutations in Saccharomyces cerevisiae . Molec. Gen. Genet. 230, 241–250 (1991). https://doi.org/10.1007/BF00290674

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00290674

Key words

Navigation