Skip to main content
Log in

Studies on the decomposition of the oxime HI 6 in aqueous solution

  • Original Investigations
  • Published:
Archives of Toxicology Aims and scope Submit manuscript

Abstract

HI 6 has been shown to be efficacious in soman intoxication of laboratory animals by reactivation of acetylcholinesterase. To assess possible risks involved in the administration of HI 6 its degradation products were analyzed at pH 2.0, 4.0, 7.4, and 9.0.

At pH 2.0, where HI 6 in aqueous solution has its maximal stability, attack on the aminal-acetal bond of the “ether bridge” predominates, with formation of formaldehyde, isonicotinamide, and pyridine-2-aldoxime. Besides, HI 6 decomposes at the oxime group yielding 2-cyanopyridine. Liberation of hydrocyanic acid at pH 2.0 is below 5%.

At pH 7.4, primary attack is on the oxime group, resulting in formation of the corresponding pyridone via an intermediate nitrile. The pyridone has been isolated and identified as 2-pyridinone, 1-(((4-carbamoylpyridinio)methoxy)methyl)formate. This major metabolite deaminates further to the 2-pyridinone, 1-(((4-carboxypyridinio)methoxy)methyl) derivative, which ultimately decomposes into formaldehyde, isonicotinic acid, and 2-pyridone. Hydrolysis of the acid amide group probably also occurs with HI 6 itself. Significant amounts of free hydrocyanic acid were only detected in the presence of an alkali trap; otherwise hydrocyanic acid reacts with formaldehyde to yield hydroxyacetonitrile from which hydrocyanic acid can be liberated again. Up to 0.6 equivalents of hydrocyanic acid were evolved at pH 7.4.

After repetitive administration and impaired renal elimination of HI 6, e.g. during renal shock, there might be some risk of cyanide intoxication.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Askew BM, Davies DR, Green AL, Holmes R (1956) The nature of the toxicity of 2-oxo-oximes. Br J Pharmacol 11: 424–427

    Google Scholar 

  • Bošković B (1981) The treatment of soman poisoning and its perspectives. Fund Appl Toxicol 1: 203–213

    Google Scholar 

  • Bošković B, Kovačević V, Jovanović D (1984) PAM-2 Cl, HI-6, and HGG-12 in soman and tabun poisoning. Fund Appl Toxicol 4: S106-S115

    Google Scholar 

  • Brown ND, Stermer-Cox MG, Doctor BP, Hagedorn I (1984a) Separation of HI 6 and its degradation products by ion-pair high-performance liquid chromatography. J Chromatogr 292: 444–450

    Google Scholar 

  • Brown ND, Gray RR, Stermer-Cox MG, Doctor BP, Hagedorn I (1984b) Stability study of HI 6 —dichloride in various anticholinergic formulations. J Chromatogr 315: 389–394

    Google Scholar 

  • Christenson I (1968a) Hydrolysis of bis(4-hydroxyiminomethyl-1-pyridiniomethyl)ether dichloride (Toxogonin). Acta Pharm Suec 5: 23–36

    Google Scholar 

  • Christenson I (1968b) Hydrolysis of bis(4-hydroxyiminomethyl-1-pyridiniomethyl)ether dichloride (Toxogonin). II. Kinetics and equilibrium in acidic solution. Acta Pharm Suec 5: 249–262

    Google Scholar 

  • Christenson I (1972) Hydrolysis of obidoxime chloride (Toxogonin). III. Kinetics in neutral and alkaline solution. Acta Pharm Suec 9: 309–322

    Google Scholar 

  • Clement JG (1982) HI-6: Reactivation of central and peripheral acetylcholinesterase following inhibition by soman, sarin and tabun in vivo in the rat. Biochem Pharmacol 31: 1283–1287

    Google Scholar 

  • Ellin RI (1958) Stability of pyridine-2-aldoxime methiodide. 1. Mechanism of breakdown in aqueous alkaline solution. J Am Chem Soc 80: 6588–6590

    Google Scholar 

  • Ellin RI, Carlese JS, Kondritzer AA (1962) Stability of pyridine-2-aldoxime methiodide. II. Kinetics of deterioration in dilute aqueous solutions. J Pharm Sci 51: 141–146

    Google Scholar 

  • Enander I, Sundwall A, Sörbo B (1961) Metabolic studies on N-methylpyridinium-2-aldoxime. I. The conversion to thiocyanate. Biochem Pharmacol 7: 226–231

    Google Scholar 

  • Eyer P, Hell W (1985) Chemical stability of the Hagedorn oximes HGG-12 and HI 6. Arch Pharm 318: 938–946

    Google Scholar 

  • Eyer P, Hell W (1986) Untersuchung des Zerfalls von HGG 12 in wäßriger Lösung. Arch Pharm 319: 558–566

    Google Scholar 

  • Gross G (1980) Entwicklung von hochwirksamen Gegenmitteln bei Vergiftungen mit toxischen Phosphonsäureestern. Inaugural Dissertation, Freiburg

  • Hagedorn I, Gündel WH, Schoene K (1969) Reaktivierung phosphorylierter Acetylcholin-Esterase mit Oximen: Beitrag zum Studium des Reaktionsablaufes. Arzneimittelforsch 19: 603–606

    Google Scholar 

  • Hagedorn I, Stark I, Lorenz HP (1972) Reaktivierung phosphorylierter Acetylcholin-Esterase. Abhängigkeit von der Aktivator-Acidität. Angew Chem 84: 354–356

    Google Scholar 

  • Klimmek R, Szinicz L, Weger N (1983) Chemische Gifte und Kampfstoffe. Wirkung und Therapie. Hippokrates Verlag, Stuttgart

    Google Scholar 

  • Kosower EM, Bauer SW (1960) Pyridinium complexes. II. The nature of the intermediate in the dithionite reduction of diphosphopyridine nucleotide. J Am Chem Soc 82: 2191–2194

    Google Scholar 

  • Kušić R, Bošković B, Vojvodić, Javanović D (1985) HI-6 in man: Blood levels, urinary excretion, and tolerance after intramuscular administration of the oxime to healthy volunteers. Fund Appl Toxicol 5: S89-S97

    Google Scholar 

  • Ligtenstein DA (1984) The synergism of HI 6 and atropine in organophosphate intoxications. Thesis, Leiden/Netherlands

  • Marcov V, Rakin D, Binenfeld Z (1984) Hidroliza 1-(2-hidroksiiminometil-1-piridinijum)-3-(4-karbamoil-1-piridinijum)-2-oksapropan dihlorida (HI 6). Ispitivanje, stabilnosti vodenih rastvora. Naučno-technički pregled 34: 19–24

    Google Scholar 

  • Philipović I, Vukušić I (1983) Stability of oxime HI 6 in acidic solutions. Abstracts of the Second International Meeting on Cholinesterases, Bled

  • Simons KJ, Briggs CJ (1983) The pharmacokinetics of HI 6 in beagle dogs. Biopharm Drug Dispos 4: 375–388

    Google Scholar 

  • Sket D, Brzin M (1986) Effect of HI 6, applied into the cerebral ventricles, on the inhibition of brain acetylcholinesterase by soman in rats. Neuropharmacology 25: 103–107

    Google Scholar 

  • Sterri SH, Lyngaas S, Fonnum F (1983) Cholinesterase and carboxylesterase activities in soman poisoned rats treated with bispyridinium mono-oximes HI-6 and HS-6. Biochem Pharmacol 32: 1646–1649

    Google Scholar 

  • Williams WJ (1979) Handbook of anion determination. Butterworth Co Ltd. London, p 70

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eyer, P., Hell, W., Kawan, A. et al. Studies on the decomposition of the oxime HI 6 in aqueous solution. Arch Toxicol 59, 266–271 (1986). https://doi.org/10.1007/BF00290549

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00290549

Key words

Navigation