Skip to main content
Log in

Gene mapping of the gibbon. Its position in primate evolution

  • Original Investigations
  • Published:
Human Genetics Aims and scope Submit manuscript

Summary

Comparative karyotyping of the Hylobatidae has revealed only very few chromosome homoeologies with other primates. Their position in the phylogenetic tree thus remains uncertain. With the hope that comparative gene mapping might allow overcoming these difficulties, somatic cell hybrids were obtained by fusion of fibroblasts from a Hylobates (Nomascus) concolor and cells from a HPRT-Chinese hamster cell line. Of 34 investigated enzyme markers, 20 could be mapped, and 7 syntenies were established. When compared with man, there were 7 synteny disruptions. These results strongly suggest that the Hylobatidae diverged from the common stem leading to the Pongidae after the Cercopithecoidae had diverged.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Cochet C, Créau-Goldberg N, Turleau C, Grouchy J de (1982) Gene mapping of Microcebus murinus (Lemuridae). A comparison with man and Cebus capucinus (Cebidae). Cytogenet Cell Genet 33: 213–221

    Google Scholar 

  • Couturier J, Dutrillaux B, Turleau C, Grouchy J de (1982) Comparaisons chromosomiques chez quatre espèces ou sous-espèces de gibbons. Ann Génét 25:5–10

    Google Scholar 

  • Créau-Goldberg N, Cochet C, Turleau C, Grouchy J de (1981) Comparative gene mapping of man and Cebus capucinus: a study of 23 enzymatic markers. Cytogenet Cell Genet 31:228–239

    Google Scholar 

  • Dutrillaux B (1979) Chromosomal evolution in primates: tentative phylogeny from Microcebus murinus (prosimian) to man. Hum Genet 48:251–314

    Google Scholar 

  • Finaz C, Cochet C, Grouchy J de (1976) Adcroissement du taux d'hybridation cellulaire par l'action cytotoxique de la strophantine (ouabaïne). Ann Génét 19:219–220

    Google Scholar 

  • Groves CP (1972) Systematics and phylogeny of Gibbons. In: Rumbangh D (ed) Gibbon and simiang, vol 1. Rarger Verlag, Basel, pp 1–89

    Google Scholar 

  • Grzeschik KH (1976) Assignment of human genes: β-glucuronidase to chromosome 7, adenylate kinase 1 to 9, a second enzyme with enolase activity to 12 and mitochondrial IDH to 15. In: Human Gene Mapping 3, Baltimore Conference (1975). Cytogenet Cell Genet 16:142–148

  • HGM6 (1982) Human Gene Mapping 6, Oslo Conference (1981). Cytogenet Cell Genet 32:1–341

  • Koch GA, Brown JA, Shows TB (1978) Gene assignment of α-fucosidase and glucose dehydrogenase to the p21-pter region of chromosome 1 in man. Somat Cell Genet 4:313–322

    Google Scholar 

  • Meera Khan P (1971) Enzyme electrophoresis on cellulose acetate gel: zymogram patterns in man-mouse and man-Chinese hamster somatic cell hybrids. Arch Biochem Biophys 145:470–484

    Google Scholar 

  • Meera Khan P, Wijnen LMM, Pearson PL (1978) Assignment of the mitochondrial aconitase gene (ACONM) to human chromosome 22. Cytogenet Cell Genet 22:212–214

    Google Scholar 

  • Meera Khan P, Rijken H, Wijnen J, Wijnen LMM, Boer LEM de (1982) Red cell enzyme variation in the orangutan; electrophoretic characterization of 45 enzyme systems in cellogel. In: Boer LEM de (ed) Biology and conservation of the orangutan. Junk, The Hague (in press)

    Google Scholar 

  • Nguyen Van Cong, Weil D, Rebourcet R, Frézal J (1977) Localisation des énolases 1 et 2 respectivement sur les chromosomes 1 et 12 par l'analyse des hybrides homme-souris. Ann Génét 20:153–157

    Google Scholar 

  • Nguyen Van Cong (1978) Cartographie chromosomique humaine par la méthode d'hybridation cellulaire homme-rongeur et application à l'étude génétique des maladies héréditaires du métabolisme. Doctoral Thesis, University of Paris

  • Pontecorvo G (1976) Polyethylene glycol (PEG) in the production of mammalian somatic cell hybrids. In. Human Gene Mapping 3. Baltimore Conference (1975). Cytogenet Cell Genet 16:399–400

  • Shows TB, Brown JA, Goggin AP, Haley LL, Byers MG, Eddy RL (1978) Assignment of a molecular form of UDP glucose pyrophosphorylase (UGPP2) to chromosome 2 in man. Cytogenet Cell Genet 22:215–218

    Google Scholar 

  • Soulié J, Grouchy J de (1981) A cytogenetic survey of 110 baboons (Papio cynocephalus). Am J Phys Anthropol 56:107–113

    Google Scholar 

  • Swallow DM, Povey S, Harris H (1973) Activity of the “red cell” acid phosphatase locus in other tissues. Ann Hum Genet 37:31

    Google Scholar 

  • Van Someren H, Beijersbergen-Van Henegouwen H, Los W, Wurzer-Figurelli E, Doppert B, Vervloet M, Meera Khan P (1974) Enzyme electrophoresis on cellulose acetate gel. Hum Genet 25:189–201

    Google Scholar 

  • Wijnen LMM, Grzeschik KH, Pearson PL, Meera Khan P (1977) The human PGM2 and its chromosomal localization in man-mouse hybrids. Hum Genet 37:271–278

    Google Scholar 

  • Wijnen LMM, Monteba-Van-Heuvel M, Pearson PL, Meera Khan P (1978) Assignment of a gene for glutathion peroxidase (GPX1) to human chromosome 3. Cytogenet Cell Genet 22:232–235

    Google Scholar 

  • Wilson DE, Povey S, Harris H (1976) Adenylate kinases in man: evidence for a third locus. Ann Hum Genet 39:305–313

    Google Scholar 

  • Weil D, Nguyen Van Cong, Gross MS, Foubert C, Frézal J (1980) Localisation du gène de la créatine kinase BB sur le chromosome 14 par l'analyse des hybrides homme-rongeur. Ann Génét 23: 150–154

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Turleau, C., Créau-Goldberg, N., Cochet, C. et al. Gene mapping of the gibbon. Its position in primate evolution. Hum Genet 64, 65–72 (1983). https://doi.org/10.1007/BF00289482

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00289482

Keywords

Navigation