Skip to main content
Log in

Carbon catabolite repression in Kluyveromyces lactis: isolation and characterization of the KINLD gene encoding the mitochondrial enzyme D-lactate ferricytochrome c oxidoreductase

  • Original Paper
  • Published:
Molecular and General Genetics MGG Aims and scope Submit manuscript

Abstract

In the “petite-negative” yeast Kluyveromyces lactis carbon catabolite repression of some cytoplasmic enzymes has been observed. However, with respect to mitochondrial enzymes, in K. lactis, unlike the case in the “petite-positive” yeast Saccharomyces cerevisiae, growth on fermentable carbon sources does not cause repression of respiratory enzymes. In this paper data are reported on carbon catabolite repression of mitochondrial enzymes in K. lactis, in particular on l- and d-lactate ferricytochrome c oxidoreductase (LCR). The l- and d-LCR (E.C. 1123, E.C. 1124) in yeast catalyze the stereospecific oxidation of d and l isomers of lactate to pyruvate. This pathway is linked to the respiratory chain, cytochrome c being the electron acceptor of the redox reaction. We demonstrate that the level of mitochondrial d- and l-LCR is controlled by the carbon source, being induced by the substrate lactate and catabolite-repressed by glucose. We cloned the structural gene for d-LCR of K. lactis (KlDLD), by complementation of growth on d,l-lactate in the S. cerevisiae strain WWF18-3D, carrying both a CYB2 disruption and the dld mutation. From the sequence analysis an open reading frame was identified that could encode a polypeptide of 579 amino acids, corresponding to a calculated molecular weight of 63 484 Da. Analysis of mRNA expression indicated that glucose repression and induction by lactate are exerted at the transcriptional level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bennetzen JL, Hall BD (1982) Codon selection in yeast. J Biol Chem 257:3026–3031

    Google Scholar 

  • Bianchi MM, Falcone C, Chen XJ, Wésolowski-Louvel M, Frontali L, Fukuhara H (1987) Transformation of the yeast Kluyveromyces lactis by new vectors derived from the 1.6 μm circular plasmid pkD1. Curr Genet 12:185–192

    Google Scholar 

  • Bonneaud N, Ozier-Kalogeropoulos O, Li G, Labouesse M, Minvielle-Sebastia L, Lacroute F (1991) A family of low and high copy replicative, integrative and single-stranded S. cerevisiae/E.coli shuttle vectors. Yeast 7:609–615

    Google Scholar 

  • Breunig KD (1989) Glucose repression of LAC gene expression in yeast is mediated by the transcriptional activator LAC9. Mol Gen Genet 216:422–427

    Google Scholar 

  • Bulder CJEA (1964) Induction of petite mutation and inhibition of synthesis of respiratory enzymes in various yeasts. Antonie van Leeuwenhoek 30:1–9

    Google Scholar 

  • Casabadan MJ, Martinez-Arias A, Shapira SK, Chou J (1983) β-galactosidase gene fusions for analyzing gene expression in Escherichia coli and yeast. Methods Enzymol 100:293–308

    Google Scholar 

  • DeDeken RH (1966) The crabtree effect: a regulatory system in yeast. J Gen Microbiol 44:149–156

    Google Scholar 

  • De Louvencourt L, Fukuhara H, Heslot H, Wésolowski M (1983) Transformation of Kluyveromyces lactis by killer plasmid DNA. J Bacteriol 154:737–742

    Google Scholar 

  • Ferrero I, Rossi C, Landini MP, Puglisi PP (1978) Role of the mitochondrial protein synthesis in the catabolite repression of the petite-negative yeast Kluyveromyces lactis. Biochem Biophys Res Commun 80:340–348

    Google Scholar 

  • Ferrero I, Viola AM, Goffeau A (1981) Induction by glucose of an antimycin-insensitive, azide-sensitive respiration in the yeast Kluyveromyces lactis. Antonie van Leeuwenhoek 47:11–24

    Google Scholar 

  • Galzy P, Slonimski, PP (1957) Variations physiologiques de la levure an cours de la croissance sur l'acide lactique comme seule source de carbone. CR Acad Sci 245:2423–2426

    Google Scholar 

  • Gancedo JM (1992) Carbon catabolite repression in yeast. Eur J Biochem 206:297–313

    Google Scholar 

  • Gasser SM, Ohashi A, Daum G, Bohni PC, Gibson J, Reid GA, Yonetani T, Schatz G (1982) Imported mitochondrial proteins cytochrome b2 and cytochrome c1 are processed in two steps. Proc Natl Acad Sci USA 79:267–271

    Google Scholar 

  • Glick BS, Brandt A, Cunnigham K, Müller S, Hallberg RL, Schatz G (1992) Cytochrome c1 and b2 are sorted to the intermembrane space of yeast mitochondria by a stop-transfer mechanism. Cell 69:809–822

    Google Scholar 

  • Goffrini P, Wésolowski-Louvel M, Ferrero I (1991) A phosphoglucose isomerase gene is involved in the Rag phenotype of the yeast Kluyveromyces lactis. Mol Gen Genet 228:401–409

    Google Scholar 

  • Gregolin C, Singer TP (1962) Zinc-FAD prosthetic groups of d-lactate cytochrome reductase. Biochim Biophys Acta 57:410–412

    Google Scholar 

  • Gregolin C, Singer TP (1963) The lactic dehydrogenase of yeast. III. d(−) lactic cytochrome c reductase, a zinc-flavoprotein from aerobic yeast. Biochim Biophys Acta 67:201–218

    Google Scholar 

  • Guiard B, Lederer F (1976) Baker's yeast flavocytochrome b2 (l-(+)-lactate dehydrogenase). Eur J Biochem 65:537–542

    Google Scholar 

  • Ito H, Fukada Y, Murata K, Kimura A (1983) Transformation of intact yeast cells treated with alkali cations. J Bacteriol 153:163–168

    Google Scholar 

  • Jacq C, Lederer F (1974) Cytochrome b2 from baker's yeast (l-lactate dehydrogenase) a double-headed enzyme. Eur J Biochem 41:311–320

    Google Scholar 

  • Koll H, Guiard B, Rassow J, Ostermann J, Horwich AL, Neupert W, Hartl F (1992) Antifolding activity of hsp20 couples protein import into the mitochondrial matrix with export to the intermembrane space. Cell 68:1163–1175

    Google Scholar 

  • Kuzhandaivelu N, Jones WK, Martin AK, Dickson RC (1992) The signal for glucose repression of the lactose-galactose regulon is amplified through subtle modulation of transcription of the Kluyveromyces lactis KlGAL4 activator gene. Mol Cell Biol 12:1924–1931

    Google Scholar 

  • Labeyrie F, Slonimski PP (1964) Mode d'action des lacticodeshydrogènases lièes aux systemes flavinique et cytochromique. Bull Soc Chim Biol 44:1793–1828

    Google Scholar 

  • Lederer F, Cortial S, Becam AM, Haumont PY, Perez L (1985) Complete amino acid sequence of flavocytochrome b2 from baker's yeast. Eur J Biochem 152:419–428

    Google Scholar 

  • Lloyd AT, Sharp PM, (1993) Synonymous codon usage in Kluyveromyces lactis. Yeast 9:1219–1228

    Google Scholar 

  • Lodi T, Viola AM, Rossi C, Ferrero I (1985) Antimycin A- and hydroxamate-insensitive respiration in yeasts. Antonie van Leeuwenhoek 51:57–64

    Google Scholar 

  • Lodi T, Ferrero I (1993) Isolation of DLD gene of Saccharomyces cerevisiae encoding the mitochondrial enzyme d-lactate ferricytochrome c oxidoreductase. Mol Gen Genet 238:315–324

    Google Scholar 

  • Lodi T, Guiard B (1991) Complex transcriptional regulation of the S. cerevisiae CYB2 gene encoding cytochrome b2. CYP1 (HAPI) activator binds to the CYB2 upstream activation site UASI-B2. Mol Cell Biol 11:3762–3772

    Google Scholar 

  • Luani D, Lodi T, Ferrero I (1994) Genes coding for mitochondrial proteins are more strongly biased in Kluyveromyces lactis than in Saccharomyces cerevisiae. Curr Genet, 26:91–93.

    Google Scholar 

  • Magasanik B (1961) Catabolite repression. Cold Spring Harbor Symp Quant Biol 26:249–256

    Google Scholar 

  • Mandel M, Higa A (1970) Calcium dependent bacteriophage DNA infection. J. Mol Biol 53:159–162

    Google Scholar 

  • Maniatis T, Fritsch EF, Sambrook J (1982) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York

    Google Scholar 

  • Nasmyth KA, Reed SI (1980) Isolation of genes by complementation in yeast: molecular cloning of a cell-cycle gene. Proc Natl Aca Sci 77:2119–2123

    Google Scholar 

  • Nygaard AP (1961) d-lactic cytochrome c reductase a flavoprotein from yeast. J Biol Chem 236:1585–1593

    Google Scholar 

  • Pfanner N, Hard FU, Neupert W (1988) Import of proteins into mitochondria: a multi-step process. Eur J Biochem 175:205–212

    Google Scholar 

  • Roise D, Horvath SJ, Tomich JM, Richards JH, Shatz G (1986) A chemically synthesized pre-sequence of an imported mitochondrial protein can form an amphiphilic helix and perturb natural and artificial phospholipid bilayers. EMBO J 5:1327–1334

    Google Scholar 

  • Rothstein RJ (1983) One-step gene disruption in yeast. Methods Enzymol 101:202–211

    Google Scholar 

  • Sanger F, Nicklen S, Coulson AR (1977) DNA sequencing with chain-terminating inhibitors, Proc Natl Acad Sci USA 74:5463–5467

    Google Scholar 

  • Sherman F, Fink GR, Hicks JB (1986) Laboratory course manual for methods in yeast genetics. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York

    Google Scholar 

  • Slonimski PP (1953) Formation des enzymes respiratoires chez la levure. Masson et Cie Editeurs, Paris

    Google Scholar 

  • Somlo M (1965) Induction des lactico-cytochrome c reductases (d- et l-) de la levure aérobic par des lactates (d- et l-). Biochim Biophys Acta 97:183–201

    Google Scholar 

  • Somlo M (1966) Présence et régulation de la synthèse de la d-LDH chez la levure aérobic. Bull Soc Chim Biol 48:247–276

    Google Scholar 

  • Somlo M (1967) Etude physiologique des trois lacticodeshydrogénases de la levure. Thèse d'Etat, Paris

  • von Heijne G (1986) Mitochondrial targeting sequences may form amphiphilic helices. EMBO J 5:1335–1342

    Google Scholar 

  • Wesolowski-Louvel M, Tanguy-Rougeau C, Fukuhara H (1988) A nuclear gene required for the expression of the linear DNA-associated killer system in the yeast Kluyveromyces lactis. Yeast 4:71–81

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by C. Hollenberg

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lodi, T., O'Connor, D., Goffrini, P. et al. Carbon catabolite repression in Kluyveromyces lactis: isolation and characterization of the KINLD gene encoding the mitochondrial enzyme D-lactate ferricytochrome c oxidoreductase. Molec. Gen. Genet. 244, 622–629 (1994). https://doi.org/10.1007/BF00282752

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00282752

Key words

Navigation