Skip to main content
Log in

Determination of physical membrane properties of plant cell protoplasts via the electrofusion technique: prediction of optimal fusion yields and protoplast viability

  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

By variation of physical parameters (field strength, pulse duration) which result in electrofusion and electroporation, properties of the plasma membrane of different types of plant cell protoplasts were analyzed. The lower threshold for that field pulse intensity at which membrane breakdown occurred (recorded as fusion event) depended on pulse duration, protoplast size, and protoplast type (tobacco, oat; vacuolated, evacuolated). This fusion characteristic of plant protoplasts can also be taken as a measure of the charging process of the membrane and allows thus a non-invasive determination of the time constant and the specific membrane capacitance. Although the fusion yield was comparable at pulse duration/field strength couples of, e.g., 10 μs/1.5 kV*cm−1 and 200 μs/0.5 kV*cm−1, hybrid viability was not. Rates of cell wall regeneration and cell division of tobacco mesophyll protoplasts were not affected but may have been increased at short pulse duration/high field strength. Plating efficiency, in contrast, was significantly decreased with longer pulse duration at low field strengths.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bates GW (1985) Planta 165: 217–224

    Google Scholar 

  • Benz R, Beckers F, Zimmermann U (1979) J Membr Biol 48: 181–204

    Google Scholar 

  • Benz R, Zimmermann U (1980) Bioelectrochem Bioenerg 8:723–729

    Google Scholar 

  • Benz R, Zimmermann U (1981) Planta 152: 314–318

    Google Scholar 

  • Bergmann L (1967) Planta 74: 243–249

    Google Scholar 

  • Coster HGL, Zimmermann U (1975) J Membr Biol 22: 73–90

    Google Scholar 

  • Ehrenberg B, Farkas DL, Fluhler EN, Lojewska Z, Loew LM (1987) Biophys J 51: 833–837

    Google Scholar 

  • Erath F, Ruge WA, Mayer W-E, Hampp R (1988) Planta 173: 447–452

    Google Scholar 

  • Farkas DL, Korenstein R, Malkin S (1984) Biophys J 45: 363–373

    Google Scholar 

  • Gimsa J, Fuhr G, Glaser R (1985) Studia Biophysica 109: 5–14

    Google Scholar 

  • Griesbach RJ, Sink KC (1983) Plant Sci Lett 30: 297–301

    Google Scholar 

  • Gross D (1988) Biophys J 54: 879–884

    Google Scholar 

  • Hampp R, Ziegler H (1980) Planta 147: 485–494

    Google Scholar 

  • Hampp R, Steingraber M, Mehrle W, Zimmermann U (1985) Naturwissenschaften 72: 91–92

    Google Scholar 

  • Hampp R, Mehrle W, Zimmermann U (1986) Plant Physiol 81: 854–858

    Google Scholar 

  • Harms CT, Lörz H, Potrykus I (1979) Plant Sci Lett 14: 237–244

    Google Scholar 

  • Jones M (1988) TIBTECH 6: 153–158

    Google Scholar 

  • Koblitz H, Hagen I (1962) Flora 152: 447–457

    Google Scholar 

  • Kohn H, Schieder R, Schieder O (1985) Plant Sci 38: 121–128

    Google Scholar 

  • Knight DE, Scrutton M (1986) Biochem J 234: 497–506

    Google Scholar 

  • Mehrle W, Zimmermann U, Hampp R (1985) FEBS 185: 89–94

    Google Scholar 

  • Mehrle W, Hampp R, Zimmermann U, Schwan HP (1988) Biochim Biophys Acta 939: 561–56

    Google Scholar 

  • Mehrle W, Hampp R, Zimmermann U (1989) Biochim Biophys Acta 978: 267–275

    Google Scholar 

  • Mehrle W, Hampp R, Naton B, Grothe D (1989) Plant Physiol 89: 1172–1177

    Google Scholar 

  • Morikawa H, Asada M, Yamada Y (1988) Plant Cell Physiol 29: 659–664

    Google Scholar 

  • Murashige T, Skoog F (1962) Physiol Plant 15: 473–497

    Google Scholar 

  • Naton B, Mehrle W, Hampp R, Zimmermann U (1986) Plant Cell Reports 5: 419–422

    Google Scholar 

  • Neumann E, Gerisch G, Opatz K (1980) Naturwissenschaften 67: 414–415

    Google Scholar 

  • Neumann E (1989) In: Neumann E, Sowers AE, Jordan CA (eds) Electroporation and Electrofusion in Cell Biology, Plenum Press, New York, pp 61–82

    Google Scholar 

  • Ochatt SJ, Rech EL, Davey MR, Power JB (1988) Plant Cell Reports 7: 393–395

    Google Scholar 

  • Rech EL, Ochatt SJ, Chand PK, Power JB, Davey MR (1987) Protoplasma 141: 169–176

    Google Scholar 

  • Sale AJH, Hamilton WA (1968) Biochim Biophys Acta 163: 37–43

    Google Scholar 

  • Schwan HP (1957) Adv Biol Med Phys 5: 147–209

    Google Scholar 

  • Schweiger H-G, Dirk J, Koop H-U, Kranz E, Neuhaus G, Spangenberg G, Wolff D (1987) Theor Appl Genet 73:769–783

    Google Scholar 

  • Seitz U, Richter G (1970) Planta 92: 309–326

    Google Scholar 

  • Senda M, Takeda J, Abe S, Nakamura T (1979) Plant Cell Physiol 20: 1441–1443

    Google Scholar 

  • Sowers AE, Lieber MR (1986) FEBS Lett 205: 179–184

    Google Scholar 

  • Tempelaar MJ, Jones MGK (1985) Planta 165: 205–216

    Google Scholar 

  • Tempelaar MJ, Duyst A, De Vlas SY, Krol G, Symmonds C, Jones MGK (1987) Plant Science 48: 99–105

    Google Scholar 

  • Tsong TY (1989) In: Neumann E, Sowers AE, Jordan CA (eds) Electroporation and Electrofusion in Cell Biology, Plenum Press, New York, pp. 149–163

    Google Scholar 

  • Wong TK, Neumann E (1982) Biochem Biophys Res Comm 107: 584–587

    Google Scholar 

  • Zachrisson A, Bornman CH (1986) Physiol Plant 67: 507–516

    Google Scholar 

  • Zhelev DV, Dimitrov DS, Doinov P (1988) Bioelectrochem Bioenerg 20: 155–167

    Google Scholar 

  • Zimmermann U, Riemann F, Pilwat G (1976) Biochim Biophys Acta 436: 460–474

    Google Scholar 

  • Zimmermann U, Scheurich P (1981) Planta 151: 26–32

    Google Scholar 

  • Zimmermann U (1982) Biochim Biophys Acta 694: 227–277

    Google Scholar 

  • Zimmermann U, Arnold WM (1983) In: Fröhlich H, Kremer F (eds) Coherent Excitations in Biological Systems, Springer, Berlin, pp: 211–221

    Google Scholar 

  • Zimmermann U, Arnold WM, Mehrle W (1988) J Electrostatics 21: 309–345

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by H. Lörz

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mehrle, W., Naton, B. & Hampp, R. Determination of physical membrane properties of plant cell protoplasts via the electrofusion technique: prediction of optimal fusion yields and protoplast viability. Plant Cell Reports 8, 687–691 (1990). https://doi.org/10.1007/BF00269994

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00269994

Keywords

Navigation