Skip to main content
Log in

Close linkage in Pseudomonas stutzeri of the structural genes for respiratory nitrite reductase and nitrous oxide reductase, and other essential genes for denitrification

  • Published:
Molecular and General Genetics MGG Aims and scope Submit manuscript

Summary

The structural gene, nirS, for the respiratory nitrite reductase (cytochrome cd 1) from Pseudomonas stutzeri was identified by (i) sequencing of the N-terminus of the purified protein and partial sequencing of the cloned gene, (ii) immunoscreening of clones from a lambda gt11 expression library, (iii) mapping of the transposon Tn5 insertion site in the nirS mutant strain MK202, and (iv) complementation of strain MK202 with a plasmid carrying the insert from an immunopositive lambda clone. A mutation causing overproduction of cytochrome c 552 mapped on the same 8.6 kb EcoRI fragment within 1.7 kb of the mutation affecting nirS. Two mutations affecting nirD, which cause the synthesis of an inactive cytochrome cd 1 lacking heme d 1, mapped 1.1 kb apart within a 10.5 kb EcoRI fragment contiguous with the fragment carrying nirS. Nir mutants of another type that had low level synthesis of cytochrome cd 1, had Tn5 insertions within an 11 kb EcoRI fragment unlinked to the nirS + and nirD + fragments. Cosmid mapping provided evidence that nirS and nirD, and the previously identified gene cluster for nitrous oxide respiration are closely linked. The nirS gene and the structural gene for nitrous oxide reductase, nosZ, are transcribed in the same direction and are separated by approximately 14 kb. Several genes for copper processing are located within the intervening region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arai H, Sanbongi Y, Igarashi Y, Kodama T (1990) Cloning and sequencing of the gene encoding cytochrome c 551 from Pseudomonas aeruginosa. FEBS Lett 261:196–198

    Google Scholar 

  • Bolivar F (1978) Construction and characterization of new cloning vehicles. III. Derivatives of plasmid pBR322 carrying unique EcoRI sites for selection of EcoRI generated recombinant DNA molecules. Gene 4:121–136

    Google Scholar 

  • Boyer HW, Roulland-Dussoix D (1969) A complementation analysis of the restriction and modification of DNA in Escherichia coli. J Mol Biol 41:459–472

    Google Scholar 

  • Chang CK, Timkovich R, Wu W (1986) Evidence that heme d1 is a 1,3-porphyrindione. Biochemistry 25:8447–8453

    Google Scholar 

  • Chu G, Vollrath D, Davis RW (1986) Separation of large DNA molecules by contour-clamped homogeneous electric fields. Science 234:1582–1585

    Google Scholar 

  • Coyle CL, Zumft WG, Kroneck PMH, Körner H, Jakob W (1985) Nitrous oxide reductase from denitrifying Pseudomonas perfectomarina. Purification and properties of a novel multicopper enzyme. Eur J Biochem 153:459–467

    Google Scholar 

  • Coyne MS, Arunakumari A, Averill BA, Tiedje JM (1989) Immunological identification and distribution of dissimilatory heme cd 1 and nonheme copper nitrite reductases in denitrifying bacteria. Appl Environ Microbiol 55:2924–2931

    Google Scholar 

  • De Blas AL, Cherwinski HM (1983) Detection of antigens on nitrocellulose paper. Immunoblots with monoclonal antibodies. Anal Biochem 133:214–219

    Google Scholar 

  • Döhler K, Huss VAR, Zumft WG (1987) Transfer of Pseudomonas perfectomarina Baumann, Bowditch, Baumann, and Beaman 1983 to Pseudomonas stutzeri (Lehman and Neumann 1896) Sijderius 1946. Int J Syst Bacteriol 37:1–3

    Google Scholar 

  • Frantz B, Chakrabarty AM (1986) Degradative plasmids in Pseudomonas. In: Sokatch JR (ed) The bacteria. A treatise on structure and function, vol 10. The biology of Pseudomonas. Academic Press, Orlando, pp 295–323

    Google Scholar 

  • Friedrich B, Böcker C, Eberz G, Eitinger T, Horstmann K, Kortlüke C, Römermann D, Schwartz E, Tran-Betcke A, Warnecke U, Warrelmann J (1990) Genes for hydrogen oxidation and denitrification form two clusters on megaplasmid pHG1 of Alcaligenes eutrophus. In: Silver S, Chakrabarty AM, Iglewski B, Kaplan S (eds) Pseudomonas. Biotransformations; pathogenesis, and evolving biotechnology. American Society for Microbiology, Washington, DC, pp 408–419

    Google Scholar 

  • Grossberger D (1987) Minipreps of DNA from bacteriophage lambda. Nucleic Acids Res 15:6737

    Google Scholar 

  • Henry Y, Bessières P (1984) Denitrification and nitrite reduction: Pseudomonas aeruginosa nitrite-reductase. Biochimie 66:259–289

    Google Scholar 

  • Hohn B (1979) In vitro packaging of lambda and cosmid DNA. Methods Enzymol 68:299–309

    Google Scholar 

  • Holloway BW, Morgan AF (1986). Genome organization in Pseudomonas. Annu Rev Microbiol 40:79–105

    Google Scholar 

  • Holmes DS, Quigley M (1981) A rapid boiling method for the preparation of bacterial plasmids. Anal Biochem 114:193–197

    Google Scholar 

  • Huynh TV, Young RA, Davis RW (1985) Constructing and screening cDNA libraries in lambda gt10 and lambda gt11. In: Glover DM (ed) DNA cloning, vol 1. IRL Press, Oxford, pp 49–78

    Google Scholar 

  • Jayaraman PS, Peakman TC, Busby SWJ, Quincey RV, Cole JA (1987) Location and sequence of the promoter of the gene for the NADH-dependent nitrite reductase of Escherichia coli and its regulation by oxygen, the Fnr protein and nitrite. J Mol Biol 196:781–788

    Google Scholar 

  • Jeter RM, Ingraham JL (1981) The denitrifying prokaryotes. In: Starr MP, Stolp H, Trüper HG, Balows A, Schlegel HG (eds) The prokaryotes: a handbook on habitats, isolation and identification of bacteria, vol 1. Springer-Verlag, Berlin, pp 913–925

    Google Scholar 

  • Eingst A, Braun C, Zumft WG (1990) Structural genes for nitrite reductase (cytochrome cd 1) and nitrous oxide reductase are part of a gene cluster. Forum Mikrobiol 13:55 (Abstract)

    Google Scholar 

  • Kroneck PMH, Antholine WA, Riester J, Zumft WG (1988) The cupric site in nitrous oxide reductase contains a mixed-valence [Cu(II), Cu(I)] binuclear center: a multifrequency electron paramagnetic resonance investigation. FEBS Lett 242:70–74

    Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Google Scholar 

  • Leary JJ, Brigati DJ, Ward DC (1983) Rapid and sensitive colorimetric method for visualizing biotin-labeled DNA probes hybridized to DNA or RNA immobilized on nitro-cellulose: bioblots. Proc Natl Acad Sci USA 80:4045–4049

    Google Scholar 

  • Leidigh BJ, Wheelis ML (1973) The clustering on the Pseudomonas putida chromosome of genes specifying dissimilatory functions. J Mol Evol 2:235–242

    Google Scholar 

  • Lindenmaier W (1985) Vektor-Wirt Systeme zur DNA-Klonierung in E. coli. In: Blin N, Trendelenburg MF, Schmidt ER (eds) Molekular-und Zellbiologie. Springer-Verlag, Berlin, pp 65–85

    Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    Google Scholar 

  • Maniatis T, Fritsch EF, Sambrook J (1982) Molecular cloning. A laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York

    Google Scholar 

  • Meade HM, Long SR, Ruvkun GB, Brown SE, Ausubel FM (1982) Physical and genetic characterization of symbiotic and auxotrophic mutants of Rhizobium meliloti induced by transposon Tn5 mutagenesis. J Bacteriol 149:114–122

    Google Scholar 

  • Messing J (1983) New M13 vectors for cloning. Methods Enzymol 101:20–78

    Google Scholar 

  • Nakane PK (1968) Simultaneous localization of multiple tissue antigens using the peroxidase-labeled antibody method: a study on pituitary glands of the rat. J Histochem Cytochem 16:557–560

    Google Scholar 

  • Nordling M, Young S, Karlsson BG, Lundberg LG (1990) The structural gene for cytochrome c 551 from Pseudomonas aeruginosa. The nucleotide sequence shows a location downstream of the nitrite reductase gene. FEBS Lett 259:230–232

    Google Scholar 

  • Priefer UB, Simon R, Pühler A (1985) Extension of the host range of Escherichia coli vectors by incorporation of RSF1010 replication and mobilization functions. J Bacteriol 163:324–330

    Google Scholar 

  • Römermann D, Friedrich B (1985) Denitrification by Alcaligenes eutrophus is plasmid dependent. J Bacteriol 162:852–854

    Google Scholar 

  • Sanger F, Nicklen S, Coulson AR (1977) DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA 74:5463–5467

    Google Scholar 

  • Silvestrini MC, Galeotti CL, Gervais M, Schininà E, Barra D, Bossa F, Brunori M (1989) Nitrite reductase from Pseudomonas aeruginosa: Sequence of the gene and the protein. FEBS Lett 245:33–38

    Google Scholar 

  • Simon R, Priefer U, Pühler A (1983) A broad host range mobilization system for in vivo genetic engineering: transposon mutagenesis in gram negative bacteria. Bio/Technology 1:784–791

    Google Scholar 

  • Southern EM (1975) Detection of specific sequences among DNA fragments separated by gel electrophoresis. J Mol Biol 98:503–517

    Google Scholar 

  • Tijssen P (1985) Practice and theory of enzyme immunoassays. Elsevier, Amsterdam, pp 96–99

    Google Scholar 

  • Towbin H, Staehelin T, Gordon J (1979) Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: Procedure and some applications. Proc Natl Acad Sci USA 76:4350–4354

    Google Scholar 

  • van Hartingsveldt J, Stouthamer AH (1973) Mapping and characterization of mutants of Pseudomonas aeruginosa affected in nitrate respiration in aerobic or anaerobic growth. J Gen Microbiol 74:97–106

    Google Scholar 

  • Viebrock A, Zumft WG (1987) Physical mapping of transposon Tn5 insertions defines a gene cluster functional in nitrous oxide respiration by Pseudomonas stutzeri. J Bacteriol 169:4577–4580

    Google Scholar 

  • Viebrock A, Zumft WG (1988) Molecular cloning, heterologous expression, and primary structure of the structural gene for the copper enzyme nitrous oxide reductase from denitrifying Pseudomonas stutzeri. J Bacteriol 170:4658–4668

    Google Scholar 

  • Yanisch-Perron C, Vieira J, Messing J (1985) Improved M13 phage cloning vectors and host strains: nucleotide sequences of the Ml3mp18 and pUC19 vectors. Gene 33:103–119

    Google Scholar 

  • Young RA, Davis RW (1983a) Yeast RNA polymerase II genes isolation with antibody probes. Science 222:778–782

    Google Scholar 

  • Young RA, Davis RW (1983b) Efficient isolation of genes by using antibody probes. Proc Natl Acad Sci USA 89:1194–1198

    Google Scholar 

  • Young RA, Bloom BR, Grosskinsky CM, Ivanyi J, Thomas D, Davis RW (1985) Dissection of Mycobacterium tuberculosis antigens using recombinant DNA. Proc Natl Acad Sci USA 82:2583–2587

    Google Scholar 

  • Zumft WG (1990) Molecular analysis of the denitrification system of pseudomonads. In: Gresshoff PM, Roth LE, Stacey G, Newton WE (eds) Nitrogen fixation: achievements and objectives. Chapman and Hall, New York, in press

    Google Scholar 

  • Zumft WG, Kroneck PMH (1990) Metabolism of nitrous oxide. In: Revsbech NP, Sorensen J (eds) Denitrification in soil and sediment. FEMS Symposium Series, vol 56. Plenum, New York, pp 37–55

    Google Scholar 

  • Zumft WG, Matsubara T (1982) A novel kind of multi-copper protein as terminal oxidoreductase of nitrous oxide respiration in Pseudomonas perfectomarinus. FEBS Lett 148:107–112

    Google Scholar 

  • Zumft WG, Döhler K, Körner H (1985) Isolation and characterization of transposon Tn5-induced mutant of Pseudomonas perfectomarina defective in nitrous oxide respiration. J Bacteriol 163:918–924

    Google Scholar 

  • Zumft WG, Döhler K, Körner H, Löchelt S, Viebrock A, Frunzke K (1988) Defects in cytochrome cd 1-dependent nitrite respiration of transposon Tn5-induced mutants from Pseudomonas stutzeri. Arch Mikrobiol 149:492–498

    Google Scholar 

  • Zumft WG, Viebrock-Sambale A, Braun C (1990) Nitrous oxide reductase from denitrifying Pseudomonas stutzeri. Genes for copper-processing and properties of the deduced products, including a new member of the family of ATP/GTP-binding proteins. Eur J Biochem, 192:591–599

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by H. Hennecke

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jüngst, A., Braun, C. & Zumft, W.G. Close linkage in Pseudomonas stutzeri of the structural genes for respiratory nitrite reductase and nitrous oxide reductase, and other essential genes for denitrification. Molec. Gen. Genet. 225, 241–248 (1991). https://doi.org/10.1007/BF00269855

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00269855

Key words

Navigation