Skip to main content
Log in

Disruption of the gene encoding restriction endonuclease SuaI and development of a host–vector system for the thermoacidophilic archaeon Sulfolobus acidocaldarius

  • Original Paper
  • Published:
Extremophiles Aims and scope Submit manuscript

Abstract

Sulfolobus acidocaldarius is a useful model organism for the genetic study of thermophilic archaea due to its ease of cultivation. Here we describe the development of a host–vector system for S. acidocaldarius consisting of SuaI restriction system-deficient strain SK-1 and shuttle vector pSAV2. The new host strain SK-1 was constructed by pop-out recombination based on the pyrE marker gene. Plasmid pSAV2 was constructed from the S. islandicus native plasmid pRN1, in which selectable markers and functional genes were inserted in suitable locations and orientations followed by the deletion of non-essential open reading frames. SK-1 allowed direct transformation without N4-methylation at SuaI restriction sites, so unmethylated vector pSAV2 could be introduced directly into SK-1 by electroporation. The transformants were selected by pyrEF complementation on xyrose–tryptone solid medium without prior liquid culturing. The transformation efficiency was approximately 1.0 × 103/μg DNA. After replication in S. acidocaldarius, pSAV2 was successfully recovered from transformant cultures by the standard alkaline lysis method. Plasmid yield was approximately 40–50 ng/ml from late-log through stationary phase cultures. In addition, pSAV2 was maintained stably and at relatively high copy number in S. acidocaldarius.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Berkner S, Lipps G (2007) Characterization of the transcriptional activity of the cryptic plasmid pRN1 from Sulfolobus islandicus REN1H1 and regulation of its replication operon. J Bacteriol 189:1711–1721

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Berkner S, Grogan D, Albers SV, Lipps G (2007) Small multicopy, non-integrative shuttle vectors based on the plasmid pRN1 for Sulfolobus acidocaldarius and Sulfolobus solfataricus, model organisms of the (cren-)archea. Nucleic Acids Res 35:e88

    Article  PubMed Central  PubMed  Google Scholar 

  • Berkner S, Wlodkowski A, Albers SV, Lipps G (2010) Inducible and constitutive promoters for genetic system in Sulfolobus acidocaldarius. Extremophiles 14:249–259

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Berkner S, Hinojosa MP, Prangishvili D, Lipps G (2014) Identification of the minimal replicon and the origin of replication of the crenarchaeal plasmid pRN1. Microbiol Open. doi:10.1002/mbo3.198

    Google Scholar 

  • Brock TD, Brock KM, Belly RT, Weiss RL (1972) Sulfolobus: a new genus of sulfur-oxidizing Bacteria living at low pH and high temperature. Arch Microbiol 84:54–68

    CAS  Google Scholar 

  • Chen L, Brügger K, Skovgaard M, Redder P, She Q, Torarinsson E, Greve B, Awayez M, Zibat A, Klenk HP, Garrett RA (2005) The genome of Sulfolobus acidocaldarius, a model organism of the Crenarchaeota. J Bacteriol 187:4992–4999

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Deng L, Zhu H, Chen Z, Liang YX, She Q (2009) Unmarked gene deletion and host–vector system for the hyperthermophilic crenarchaeon Sulfolobus islandicus. Extremophiles 13:735–746

    Article  CAS  PubMed  Google Scholar 

  • Farkas J, Stirrett K, Lipscomb GL, Nixon W, Scott RA, Adams MWW, Westpheling J (2012) Recombinogenic properties of Pyrococcus furiosus strain COM1 enable rapid selection of targeted mutants. Appl Environ Microbiol 78:4669–4676

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Grogan DW (1991) Selectable mutant phenotypes of the extremely thermophilic archaebacterium Sulfolobus acidocaldarius. J Bacteriol 173:7725–7727

    PubMed Central  CAS  PubMed  Google Scholar 

  • Grogan DW (1996) Isolation of Sulfolobus acidocaldarius mutants. In: Robb FT, Place AR, Sowers KR, Schreier HJ, DasSarma S, Fleishmann EM (eds) Archaea: a laboratory manual. Cold Spring Harbor, Cold Spring Harbor Laboratory

    Google Scholar 

  • Grogan DW (2003) Cytosine methylation by the SuaI restriction-modification system: implications for genetic fidelity in a hyperthermophilic archaeon. J Bacteriol 185:4657–4661

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Grogan DW, Gunsalus RP (1993) Sulfolobus acidocaldarius synthesizes UMP via a standard de novo pathway: results of biochemical-genetic study. J Bacteriol 175:1500–1507

    PubMed Central  CAS  PubMed  Google Scholar 

  • Grogan DW, Hansen JE (2003) Molecular characteristics of spontaneous deletions in the hyperthermophilic archaeon Sulfolobus acidocaldarius. J Bacteriol 185:1266–1272

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Grogan DW, Carver GT, Drake JW (2001) Genetic fidelity under harsh conditions: analysis of spontaneous mutation in the thermoacidophilic archaeon Sulfolobus acidocaldarius. Proc Natl Acad Sci USA 98:7928–7933

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Honarbakhsh M, Villafane AA, Ruhl I, Sannino D, Bini E (2012) Development of a thermostable β-glucuronidase-based reporter system for monitoring gene expression in hyperthermophiles. Biotechnol Bioeng 109:1881–1886

    Article  CAS  PubMed  Google Scholar 

  • Hwang S, Choi KH, Yoon N, Cha J (2015) Improvement of a SulfolobusE. coli shuttle vector for heterologous gene expression in Sulfolobus acidocaldarius. J Microbiol Biotechnol 25:196–205

    Article  CAS  PubMed  Google Scholar 

  • Kawarabayasi Y, Hino Y, Horikawa H, Jin-no K, Takahashi M, Sekine M, Baba S, Ankai A, Kosugi H, Hosoyama A, Fukui S, Nagai Y, Nishijima K, Otsuka R, Nakazawa H, Takamiya M, Kato Y, Yoshizawa T, Tanaka T, Kudoh Y, Yamazaki J, Kushida N, Oguchi A, Aoki K, Masuda S, Yanagii M, Nishimura M, Yamagishi A, Oshima T, Kikuchi H (2001) Complete genome sequence of an aerobic thermoacidophilic crenarchaeon, Sulfolobus tokodaii strain7. DNA Res 8:123–140

    Article  CAS  PubMed  Google Scholar 

  • Kurosawa N, Grogan DW (2005) Homologous recombination of exogenous DNA with the Sulfolobus acidocaldarius genome: properties and uses. FEMS Microbiol Lett 253:141–149

    Article  CAS  PubMed  Google Scholar 

  • Martusewitsch E, Sensen CW, Schleper C (2000) High spontaneous mutation rate in the hyperthermophilic archaeon Sulfolobus solfataricus is mediated by transposable elements. J Bacteriol 182:2574–2581

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Prangishvili DA, Vashakidze RP, Chelidze MG, Gabriadze IY (1985) A restriction endonuclease SuaI from the thermoacidophilic archaebacterium Sulfolobus acidocaldarius. FEBS Lett 192:57–60

    Article  CAS  PubMed  Google Scholar 

  • Reilly MS, Grogan DW (2001) Characterization of intragenic recombination in a hyperthermophilic archaeon via conjugational DNA exchange. J Bacteriol 183:2943–2946

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sakofsky CJ, Runck LA, Grogan DW (2011) Sulfolobus mutants, generated via PCR products, which lack putative enzymes of UV photoproduct repair. Archaea. doi:10.1155/2011/864015

    PubMed Central  PubMed  Google Scholar 

  • Sato T, Fukui T, Atomi H, Imanaka T (2005) Improved and versatile transformation system allowing multiple genetic manipulations of the hyperthermophilic archaeon Thermococcus kodakaraensis. Appl Environ Microbiol 71:3889–3899

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Schleper C, Kubo K, Zillig W (1992) The particle SSV1 from the extremely thermophilic archaeon Sulfolobus is a virus: demonstration of infectivity and of transfection with viral DNA. Proc Natl Acad Sci USA 89:7645–7649

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • She Q, Singh RK, Confalonieri F, Zivanovic Y, Allard G, Awayez MJ, Chan-Weiher CC, Clausen IG, Curtis BA, De Moors A, Erauso G, Fletcher C, Gordon PM, Heikamp-de Jong I, Jeffries AC, Kozera CJ, Medina N, Peng X, Thi-Ngoc HP, Redder P, Schenk ME, Theriault C, Tolstrup N, Charlebois RL, Doolittle WF, Duguet M, Gaasterland T, Garrett RA, Ragan MA, Sensen CW, Van der Oost J (2001) The complete genome of the crenarchaeon Sulfolobus solfataricus P2. Proc Natl Acad Sci USA 98:7835–7840

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • She Q, Zhang C, Deng L, Peng N, Chen Z, Liang YX (2009) Genetic analyses in the hyperthermophilic archaeon Sulfolobus islandicus. Biochem Soc Trans 37:92–96

    Article  CAS  PubMed  Google Scholar 

  • Wagner M, Berkner S, Ajon M, Driessen AJM, Lipps G, Albers SV (2009) Expanding and understanding the genetic toolbox of the hyperthermophilic genus Sulfolobus. Biochem Soc Trans 37:97–101

    Article  CAS  PubMed  Google Scholar 

  • Wagner M, Wolferen MV, Wagner A, Lassak K, Meyer BH, Reimann J, Albers SV (2012) Versatile genetic tool box for the crenarchaeote Sulfolobus acidocaldarius. Front Microbiol 3:214

    Article  PubMed Central  PubMed  Google Scholar 

  • Wagner M, Wagner A, Ma X, Kort JC, Ghosh A, Rauch B, Siebers B, Albers SV (2014) Investigation of the malE promoter and MalR, a positive regulator of the maltose regulon, for an improved expression system in Sulfolobus acidocaldarius. Appl Environ Microbiol 80:1072–1081

    Article  PubMed Central  PubMed  Google Scholar 

  • Worthington P, Hoang V, Pomares FP, Blum P (2003) Targeted disruption of the α-amylase gene in the hyperthermophilic archaeon Sulfolobus solfataricus. J Bacteriol 185:482–488

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhang C, Whitaker RJ (2012) A broadly applicable gene knockout system for the thermoacidophilic archaeon Sulfolobus islandicus based on simvastatin selection. Microbiology 158:1513–1522

    Article  CAS  PubMed  Google Scholar 

  • Zhang C, Guo L, Deng L, Wu Y, Liang Y, Huang L, She Q (2010) Revealing the essentiality of multiple archaeal pcna genes using a mutant propagation assay based on an improved knockout method. Microbiology 156:3386–3397

    Article  CAS  PubMed  Google Scholar 

  • Zhang C, Cooper TE, Krause DJ, Whitaker RJ (2013) Augmenting the genetic toolbox for Sulfolobus islandicus with a stringent positive selectable marker for agmatine prototrophy. Appl Environ Microbiol 79:5539–5549

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zheng T, Huang Q, Zhang C, Ni J, She Q, Shen Y (2012) Development of a simvastatin selection marker for a hyperthermophilic acidophile, Sulfolobus islandicus. Appl Environ Microbiol 78:568–574

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zillig W, Prangishvilli D, Schleper C, Elferink M, Holz I, Albers S, Janekovic D, Gotz D (1996) Viruses, plasmids and other genetic elements of thermophilic and hyperthermophilic Archaea. FEMS Microbiol Rev 18:225–236

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Dennis Grogan for providing a viable culture of S. acidocaldarius MR31 and for valuable suggestions to improve the manuscript. We also thank Kenneth M. Stedman for providing a viable culture of S. islandicus REN1H1, and Yoko Kawasaki for valuable technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Norio Kurosawa.

Additional information

Communicated by L. Huang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 1031 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suzuki, S., Kurosawa, N. Disruption of the gene encoding restriction endonuclease SuaI and development of a host–vector system for the thermoacidophilic archaeon Sulfolobus acidocaldarius . Extremophiles 20, 139–148 (2016). https://doi.org/10.1007/s00792-016-0807-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00792-016-0807-0

Keywords

Navigation