Skip to main content
Log in

Biogenesis of mitochondria 34

The synergistic interaction of nuclear and mitochondrial mutations to produce resistance to high levels of mikamycin in Saccharomyces cerevisiae

  • Published:
Molecular and General Genetics MGG Aims and scope Submit manuscript

Summary

Mutants of the yeast Saccharomyces cerevisiae have been isolated in this laboratory which show increased resistance to a number of structurally and functionally unrelated antibiotics such as mikamycin, chloramphenicol, oligomycin and tetracycline (Bunn et al., 3971). When a multiply resistant haploid strain was crossed to an antibiotic sensitive strain, the resultant diploid progeny were completely resistant to chloramphenicol and oligomycin. However, the progeny showed different responses to mikamycin depending upon the concentration of antibiotic, all showed resistance to 25 μg/ml but only about half were resistant to high levels of mikamycin (>100 μg/ml). Detailed genetic analyses has shown that resistance to high levels of mikamycin is the result of a phenotypic interaction between two mutations, one nuclear and the other mitochondrial. The nuclear mutation by itself confers resistance to a number of antibiotics including chloramphenicol, oligomycin and mikamycin at a level of 25 μg/ml. The mitochondrial mutation increases cellular resistance to mikamycin from 3 μg/ml to about 8 μg/ml. When the two mutations occur together in a cell, resistance to mikamycin is increased to at least 800 μg/ml, the limit of solubility. Thus, the phenotypie interaction between these two mutations is not additive but synergistic.

When cells containing the cytoplasmic [mik1-r] mutation are treated with ethidium bromide to produce ϱ ° cells (no mtDNA), the [mik1-r] determinant is lost, indicating that this mutation is located in the mitochondrial DNA. Recombination analyses with other mitochondrial markers indicates a marker order of [oli1-r mik1-r ery1-r] with [mik1-r] showing tighter linkage to the [oli1-r] marker.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Avner, P. R., Griffiths, D. E.: Oligomycin resistant mutants in yeast. Fed. Eur. Biochem. Soc., Letters 10, 202–207 (1970)

    Google Scholar 

  • Bunn, C. L., Mitchell, C. H., Lukins, H. B., Linnane, A. W.: Biogenesis of mitochondria. 18. A new class of mitochondrial cytoplasmically determined antibiotic resistant mutants in Saccharomyces cerevisiae. Proc. nat. Acad. Sci. (Wash.) 67, 1233–1240 (1971)

    Google Scholar 

  • Cox, B. S.: φ, a cytoplasmic suppressor of super-suppressor in yeast. Heredity 20, 505–521 (1965)

    Google Scholar 

  • Dixon, H., Kellerman, G. M., Mitchell, C. H., Towers, N. H., Linnane, A. W.: Mikamycin, an inhibitor of both mitochondrial protein synthesis and respiration. Biochem. biophys. Res. Commun. 43, 780–786 (1971)

    Google Scholar 

  • Fink, G. R., Styles, C. A.: Curing of a killer factor in Saccharomyces cerevisiae. Proc. nat. Acad. Sci.(Wash.) 69, 2846–2849 (1972)

    Google Scholar 

  • Gingold, E. B., Saunders, G. W., Lukins, H. B., Linnane, A. W.: Biogenesis of mitochondria. 10. Reassortment of the cytoplasmic genetic determinants for respiratory competence and erythromycin resistance in Saccharomyces cerevisiae. Genetic 62, 735–744 (1969)

    Google Scholar 

  • Goldring, E. S., Grossman, L. I., Krupnick, D., Cryer, D. R., Marmur, J.: The petite mutation in yeast. Loss of mitochondrial deoxy-ribonucleic acid during induction of petites with ethidium bromide. J. molec. Biol. 52, 323–335 (1970)

    Google Scholar 

  • Howell, N., Trembath, M. K., Linnane, A. W., Lukins, H. B.: Biogenesis of mitochondria. 30. An analysis of mitochondrial gene recombination and transmission. Molec. gen. Genet. 122, 37–52 (1973)

    Google Scholar 

  • Hughes, A. R., Wilkie, D.: Genetic analysis of mitochondrial resistance to tetracycline in Saccharomyces cerevisiae. Heredity 28, 117–127 (1972)

    Google Scholar 

  • Linnane, A. W., Haslam, J. M.: The biogenesis of yeast mitochondria (ed. Horecker, B. L., and Stadtman, E. R.), Curr. topics cell regul. vol. 2, p. 101–172. New York: Academic Press 1970

    Google Scholar 

  • Linnane, A. W., Haslam, J. M., Lukins, H. B., Nagley, P.: The biogenesis of mitochondria in microorganisms. Ann. Rev. Microbiol. 26, 163–198 (1972)

    Google Scholar 

  • Linnane, A. W., Saunders, G. W., Gingold, E. B., Lukins, H. B.: Biogenesis of mitochondria. 5. Cytoplasmic inheritance of erythromycin resistance Saccharomyces cerevisiae. Proc. nat. Acad. Sci. (Wash.) 59, 903–910 (1968)

    Google Scholar 

  • Mitchell, C. H., Bunn, C. L., Lukins, H. B., Linnane, A. W.: Biogenesis of mitochondria. 23. The biochemical and genetic characteristics of two different oligomycin resistant mutants of Saccharomyces cerevisiae under the influence of cytoplasmic genetic modification. Bioenerg. 4, 161–184 (1973)

    Google Scholar 

  • Nagley, P., Linnane, A. W.: Mitochondrial DNA deficient petite mutants of yeast. Biochem. biophys. Res. Commun. 39, 989–996 (1970)

    Google Scholar 

  • Parker, J. H., Trimble, I. R., Jr., Mattoon, J. R.: Oligomycin resistance in normal and mutant yeast. Biochem. biophys. Res. Commun. 33, 590–595 (1968)

    Google Scholar 

  • Sager, R.: Cytoplasmic genes and organelles. New York: Academic Press 1972

    Google Scholar 

  • Saunders, G. W., Gingold, E. B., Trembath, M. K., Lukins, H. B., Linnane, A. W.: Mitochondrial genetics in yeast: segregation of a cytoplasmic determinant in crosses and its loss or retention in the petite. In: Autonomy and biogenesis of mitochondria and chloroplasts (Boardman, N. K., Linnane, A. W., Smillie, R. M., eds.), p. 185–193. Amsterdam: Nord Holland Press 1971

    Google Scholar 

  • Sherman, F.: Respiration-deficient mutants of yeast. I. Genetics. Genetics 48, 375–385 (1963)

    Google Scholar 

  • Stuart, K. D.: Cytoplasmic inheritance of oligomycin and rutamycin resistance in normal and mutant yeast. Biochem. biophys. Res. Commun. 33, 590–595 (1970)

    Google Scholar 

  • Vazquez, D.: The streptogramin family of antibiotics. In: Antibiotics. Mechanism of action, vol. 1, p. 387–403 (Gottlieb, D., Shaw, P. D., eds.). Berlin-Heidelberg-New York: Springer 1967

    Google Scholar 

  • Wakabayashi, K., Gunge, N.: Extrachromosomal inheritance of oligomycin resistance in yeast. Fed. Eur. Biochem. Soc., Letters 6, 302–304 (1970)

    Google Scholar 

  • Young, C. S. H., Cox, B. S.: Extrachromosomal elements in a super-suppression of yeast. I. A nuclear gene controlling the inheritance of the extrachromosomal elements. Heredity 26, 413–422 (1971)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by W. Maas

Rights and permissions

Reprints and permissions

About this article

Cite this article

Howell, N., Molloy, P.L., Linnane, A.W. et al. Biogenesis of mitochondria 34. Molec. Gen. Genet. 128, 43–54 (1974). https://doi.org/10.1007/BF00267293

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00267293

Keywords

Navigation