Skip to main content
Log in

Flight of the honey bee VI: energetics of wind tunnel exhaustion flights at defined fuel content, speed adaptation and aerodynamics

  • Original Paper
  • Published:
Journal of Comparative Physiology B Aims and scope Submit manuscript

Abstract

To gain information on extended flight energetics, quasi-natural flight conditions imitating steady horizontal flight were set by combining the tetheredflight wind-tunnel method with the exhaustion-flight method. The bees were suspended from a two-component aerodynamic balance at different, near optimum body angle of attack α and were allowed to choose their own speed: their body mass and body weight was determined before and after a flight; their speed, lift, wingbeat frequency and total flight time were measured throughout a flight. These values were used to determine thrust, resultant aerodynamic force (magnitude and tilting angle), Reynolds number, total flight distance and total flight impulse. Flights in which lift was ≥ body weight were mostly obtained. Bees, flown to complete exhausion, were refed with 5, 10, 15 or 20 μl of a 1.28-mol·l-1 glucose solution (energy content w=18.5, 37.0, 55.5 or 74.0 J) and again flown to complete exhaustion at an ambient temperature of 25±1.5°C by a flight of known duration such that the calculation of absolute and relative metabolic power was possible. Mean body mass after exhaustion was 76.49±3.52 mg. During long term flights of 7.47–31.30 min similar changes in flight velocity, lift, thrust, aerodynamic force, wingbeat frequency and tilting angle took place, independent of the volume of feeding solution. After increasing rapidly within 15 s a more or less steady phase of 60–80% of total flight time, showing only a slight decrease, was followed by a steeper, more irregular decrease, finally reaching 0 within 20–30 s. In steady phases lift was nearly equal to resultant aerodynamic force; tilting angle was 79.8±4.0°, thrust to lift radio did not vary, thrust was 18.0±7.4% of lift, lift was somewhat higher/equal/lower than body mass in 61.3%, 16.1%, 22.6% of all totally analysable flights (n=31). The following parameters were varied as functions of volume of feeding solution (5–20 μl in steps of 5 μl) and energy content. (18.5–74.0 J in steps of 18.5 J): total flight time, velocity, total flight distance, mean lift, thrust, mean resultant aerodynamic force, tilting angle, total flight impulse, wingbeat frequency, metabolic power and metabolic power related to body mass, the latter related to “empty”, “full” and “mean” (=100 mg) body mass. The following positive correlations were found: L=1.069·10-9 f 2.538; R=1.629·10-9 f 2.464; P m=7.079·10-8 f 2.456; P m=0.008v+0.008; P m=18.996L+0.022; P m=19.782R+0.021; P m=82.143T+0.028; P m=1.245·bm 1.424f ; P mrel e=6.471·bm 1.040f ; β=83.248+0.385α. The following negative correlations were found: V=3.939−0.032α; T=1.324·10-4−0.038·10-4α. Statistically significant correlations were not found in T(f), L(α), R(α), f(α), P m(bm e), P m rel e(bm e), P m rel f(bm e), P m rel f(bm f).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

A(m2):

frontal area

bl(m):

body length

bm(mg):

body mass

c(mol·1-1):

glucose concentration of feeding solution

c D (dimensionless):

drag coefficient, related to A

D(N):

drag

F w(N):

body weight

F wp :

weight of paper fragment lost at flight start

f :

wingbeat frequency (s-1)

g(=9.81 m·s-2):

gravitational acceleration

I(Ns)=∫R(t) :

dt total impulse of a flight

L(N) lift:

vertical sustaining force component

P m(J·s-1=W):

metabolic power

Pm ret (W·g-1):

metabolic power, related to body mass

R(N):

\(\sqrt {L^2 + T^2 } \)resultant aerodynamic force

Re :

v·bl·v -1 (dimensionless) Reynolds number, related to body length

s(m):

v(t) dt virtual flight distance of a flight

s(km):

total virtual flight distance

T (N) thrust:

horizontal force component of horizontal flight

T a (°C):

ambient temperature

t(s):

time

t tot (s or min):

total flight time

v(m·s-1):

flight velocity

v(μl):

volume of feeding solution

W (J):

energy and energy content of V

α(\(\measuredangle \)°):

body angle of attack between body longitudinal axis and flow direction

β(\(\measuredangle \)°):

tilting angle (≤ 90°) between R and the horizont in horizontal flight v(=1.53·10-5m2·s-1 for air at 25°) kinematic viscosity

ϱ(=1.2 kg·m-3 at 25°C):

air density

References

  • Bastian J, Esch H (1970) The nervous control of the indirect flight muscles of the honey bee. Z Vergl Physiol 67:307–324

    Google Scholar 

  • Casey TM (1985) Flight energetics of euglossine bees in relation to morphology and wing stroke frequency. J Exp Biol 116:271–289

    Google Scholar 

  • Casey TM, May ML (1982) Morphometrics, wingstroke frequency and energy metabolism of euglossine bees during hovering flight. In: Nachtigall W (ed) BIONA-report 1, Akad Wiss Mainz. Fischer, Stuttgart, pp 1–10

    Google Scholar 

  • Connover WJ (1980) Practical nonparametric statistics. Wiley, New York

    Google Scholar 

  • Crailsheim K (1988a) Intestinal transport of glucose solution during honeybee flight. In: Nachtigall W (ed) BIONA-report 6, Akad Wiss Mainz. Fischer, Stuttgart, pp 119–128

    Google Scholar 

  • Crailsheim K (1988b) Regulation of food passage in the intestine of the honeybee (Apis mellifera L.). J Insect Physiol 34:85–90

    Google Scholar 

  • Crailsheim K (1988c) Intestinal transoort of sugars in the honeybee (Apis mellifera L.). J Insect Physiol 34:839–845

    Google Scholar 

  • Dreher A, Nachtigall W (1982) Optimierte Laborbedingungen für Langzeitflüge vor dem Windkanal bei der Wanderheuschrecke, Locusta migratoria. In: NAchtigall W (ed) BIONA-report 2, Akad Wiss Mainz. Fischer, Stuttgart, pp 111–120

    Google Scholar 

  • Dudley R, Ellington CP (1990) Mechanics of forward flight in bumblebees. I. Kinematics and morphology. J Exp Biol 148:19–52

    Google Scholar 

  • Dyer FC, Seeley TD (1987) Interspecific comparisons of endothermy in honey-bees (Apis): deviations from the expected size-related patterns. J Exp Biol 127:1–26

    Google Scholar 

  • Esch H (1976) Body temperature and flight performance of honey bees in a servomechanically controlled wind tunnel. J Comp Physiol 109:265–277

    Google Scholar 

  • Esch H, Nachtigall W, Kogge SN (1975) Correlations between aerodynamic output, electrical activity in the indirect flight muscles and wing positions of bees flying in a servomechanically controlled wind tunnel. J Comp Physiol 100:147–159

    Google Scholar 

  • Feller P, Nachtigall W (1989) Flight of the honeybee. II. Inner and surface thorax temperatures and energetic criteria, correlated to flight parameters. J Comp Physiol B 158:719–727

    Google Scholar 

  • Frisch K Von (1965) Tanzsprache und orientierung der Bienen. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Frisch K Von, Lindauer M (1955) Üder die Fluggeschwindigkeit der Bienen und über ihre Richtungsweisung bei Seitenwind. Naturwissenschaften 42:377–385

    Google Scholar 

  • Hanauer-Thieser U (1994) Aerodynamische und energetische Kenngrößen von Honigbienen Apis mellifica carnica beim fixierten Windkanalflug mit definiertem Energievorrat. Diplomarbeit (unpubl.), Universität des Saarlandes

  • Heran H (1956) Ein Beitrag zur Frage nach der Wahrnehmungs-grundlage der Entfernungsweisung der Bienen (Apis mellifica L.). Z Vergl Physiol 38:168–218

    Google Scholar 

  • Heran H (1959) Wahrnehmung und Regulung der Flugeigengeschwindigkeit bei Apis mellifica L. Z Vergl Physiol 42:103–163

    Google Scholar 

  • Heran H, Lindauer M (1963) Windkompensation und Seitenwindkorrektur der Bienen beim Flug über Wasser. Z Vergl Physiol 47:39–55

    Google Scholar 

  • Louw GN, Hadley NF (1985) Water economy of the honeybee. A stochiometric accounting. J Exp Zool 235:147–150

    Google Scholar 

  • Mörz M (1988) Programmpaket für die nichtparametrische und parametrische uni-und bivariate Zeitreihenanalyse mit Anwendungs-beispielen aus der Flugbiophysik. Diplomarbeit (unpublished) Universität des Saarlandes

  • Nachtigall W, Hanauer-Thieser U (1992) Flight of the honeybee. V. Drag and lift coefficients of the bee's body; implications for flight dynamics. J Comp Physiol B 162:267–277

    Google Scholar 

  • Nachtigall W, Widmann R, Renner M (1971) Über den “ortsfesten” freien Flug von Bienen in einem Saugkanal. Apidologie 2:271–282

    Google Scholar 

  • Nachtigall W, Rothe U, Feller P, Jungmann R (1989) Flight of the honeybee. III. Flight metabolic power calculated from gas analysis, thermoregulation and fuel consumption. J Comp Physiol B 158:729–737

    Google Scholar 

  • Pasedach-Poeverlein K (1941) Über das “Spritzen” der Bienen und über die Kozentrationsänderung ihres Honigblaseninhalts. Z Vergl Physiol 28:197–210

    Google Scholar 

  • Rothe U, Nachtigall W (1989) Flight of the honeybee. IV. Respiratory quotients and metabolic rates during sitting, walking and flying. J Comp Physiol B 158:739–749

    Google Scholar 

  • Sachs L (1984) Angewandte Statistik: Anwendung statistischer Methoden. Springer, Berlin Heidelberg New York Tokyo

    Google Scholar 

  • Schmid-Hempel (1987) Efficient nectar-collecting by honeybees. I. Economic models. J Anim Ecol 56:209–218

    Google Scholar 

  • Scalicki N, Heran H, Crailsheim K (1988) Water budget of the honeybee during rest and flight. In: Nachtigall W (ed) BIONA-report 6, Akad Wiss Mainz. Fischer, Stuttgart, pp 103–118

    Google Scholar 

  • Sotavalta O (1954) On the fuel consumption of the honeybee (Apis mellifica L.) in flight experiments. Ann Zool Soc “Vanamo” 16:1–27

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by H. Langer

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hanauer-Thieser, U., Nachtigall, W. Flight of the honey bee VI: energetics of wind tunnel exhaustion flights at defined fuel content, speed adaptation and aerodynamics. J Comp Physiol B 165, 471–483 (1995). https://doi.org/10.1007/BF00261302

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00261302

Key words

Navigation