Skip to main content

Flight a Retrospect a Brief Review

  • Chapter
  • First Online:
Biophysics of Insect Flight

Part of the book series: Springer Series in Biophysics ((BIOPHYSICS,volume 22))

  • 544 Accesses

Abstract

This review of literature on Biophysics of Insect Flight can broadly be divided into four subdivisions. Early experimental investigations on wingbeat frequency and related parameters using simple mechanical, optical and electrical devices were carried out during 1934–1955. Advanced flight techniques for finding wingbeat frequency, wing mutilations, vortex theory, wing kinematics and detailed lift enhancing mechanisms were developed during 1956–1984. During the period of 1985–2008, studies on power requirements of a few insects have been analyzed. Shyy et al. (Prog Aerosp Sci 46(7):284–327, 2010) have discussed progress in the aerodynamics and aeroelasticity at low Re. As Re increases, velocity also increases. Recently, researchers are exploring the possibility of designing the Biomimicking MAVs based on the principles of insect flight. We may be able to design the MAV of Insect size in a decade or so.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Magnan, A. (1934). Law Locomotion Chez Lessanimacs. 1 Le Vol. Des insectes Paris, Herman.

    Google Scholar 

  2. Chadwick, L. E. (1939). Some factors which affect the rate of movement of the wings in Drosophila. Physiological Zoology, 12(2), 151–160.

    Article  Google Scholar 

  3. Pringle, J. W. S. (1957). Insect flight. Cambridge University Press.

    Google Scholar 

  4. Osborne, M. F. M. (1951). Aerodynamics of flapping flight with application to insects. Journal of Experimental Biology, 28(2), 221–245.

    Article  Google Scholar 

  5. Roeder, K. D. (1951). Orthopteran flight. Biology Bulletin (Woods Hole), 100, 95–106

    Google Scholar 

  6. Sotavalta, O. (1952). The essential factors regulating the wing-stroke frequency of insects in wing mutilation and wing loading experiments at Sub-atmospheric pressure. Annalea Zoologici Societatis Vanamo, 15, 1–67.

    Google Scholar 

  7. Chadwick, L. E. (1953). Aerodynamics and flight metabolism. In K. D. Roeder (Ed.), Insect physiology. New York: John Wiley.

    Google Scholar 

  8. Sotavalta, O. (1953). Recordings of high wing-stroke and thoracic vibration frequency in some midges. Biological Bulletin, 439–444.

    Google Scholar 

  9. Sotavalta, O. (1954). On the fuel consumption of the honey bee (Apismellifica L.). In flight experiments. Annales Zoologicae Societatis Zoologicae-Botanicae Fennvanamo, 16, 1–27.

    Google Scholar 

  10. Weis-Fogh, T., & Jensen, M. (1956). Biology and physics of locust flight. I. basic principles in insect flight. a critical review. Philosophical Transactions of the Royal Society B: Biological Sciences, 239(667), 415–458.

    Google Scholar 

  11. Greenwalt, C. H. (1960). The wings of insects and birds as mechanical oscillators. Proceedings American Philosophical Society, 104, 605.

    Google Scholar 

  12. Sotavalta, O. (1963). The flight sounds of insects. Acoustic Behavior of Animals, 374–389.

    Google Scholar 

  13. Anderson, S. O., & Weis-Fogh. (1964). ‘Resilin’ in advances in insect.

    Google Scholar 

  14. Chari (2014). Bio-aerodynamics of Avian Flight. Banglore, India: NDRF.

    Google Scholar 

  15. Bennett, L. (1966). Insect aerodynamics:Vertical sustaining force in near-hovering flight. Science, 152, 1263–1266.

    Google Scholar 

  16. Vogel, S. (1966). Flight in Drosophila-1, Flight performance of tethered flies. Journal of Experimental Biology, 44, 567–578.

    Article  Google Scholar 

  17. Pennycuick, C. J. (1968). Power requirements for horizontal flight in the pigeon. Columba. Livia Journal Experimental Biology, 49, 527.

    Google Scholar 

  18. Crawford, F. S. (1971). Comments on: The physics and physiology of insect flight. American Journal of Physics, 39, 584.

    Article  ADS  Google Scholar 

  19. Weis-Fogh, T. (1972). Energetics of hovering flight in humming birds and in Drosophila. Journal of Experimental Biology, 56–79

    Google Scholar 

  20. Weis-Fogh, T. (1973). Quick estimates of flight fitness in hovering animals, including novel mechanisms for lift production. Journal of Experimental Biology, 59(1), 169–-230.

    Google Scholar 

  21. Lighthill, M. J. (1973). On the Weis-Fogh mechanism of lift generation. Journal of Fluid Mechanics, 60(01), 1–17.

    Article  ADS  Google Scholar 

  22. Bennett, M. R. (1973). An electrophysiological analysis of the uptake of noradrenaline at sympathetic nerve terminals. The Journal of Physiology, 229(2), 533–546.

    Article  Google Scholar 

  23. Puranik, P. G., Chari, N., & Sukhdev, R. D. (1973). New methods for measuring lift and wingbeat frequency in insect flight. Indian Journal of Experimental Biology, 11, 579–580.

    Google Scholar 

  24. Nachtigall, W. (1974). Biological mechanisms of attachment.

    Google Scholar 

  25. Norberg, R. Å. (1975). Hovering flight of the dragonfly Aeschna juncea L., kinematics and aerodynamics. In Swimming and flying in nature (pp. 763–781). Springer US.

    Google Scholar 

  26. Rainey, R. C. (1976). Flight behaviour and features of the atmospheric environment. In Symposia of the royal entomological Society of London.

    Google Scholar 

  27. Norberg, U. M. (1976). Aerodynamics of hovering flight in the long-eared bat Plecotus auritus. The Journal of Experimental Biology, 65(2), 459–470.

    Article  MathSciNet  Google Scholar 

  28. Pringle, J. W. S. (1976). The muscle and sense organs involved in insect flight, 3–15, Insect flight. In R. C. Rainey (Ed.). Oxford and London: Blackwell Scientific Publication.

    Google Scholar 

  29. Puranik, P. G., & Ahmed, A. (1976). Fourier analysis of the flight-sound of the pentatomid bug tessaratoma javanica Thunberg & the pressure pattern of its wings. Indian Journal of Experimental Biology.

    Google Scholar 

  30. Ahmed, A. (1978). Studies on bioacoustics and aerodynamics of fliers. Ph.D. thesis, Osmania University, Hyderabad, India.

    Google Scholar 

  31. Weis-Fogh, T., & Alexander, R. M. (1977). The sustained power output from striated muscle. Scale Effects in Animal Locomotion, 511–525.

    Google Scholar 

  32. AravindBabu, A., Venkatachalapathy, V., & Chari, N. (1978). Aerodynamic parameters of Chrysocorispurpureus (Westw.), (Pentatomidae:Heteroptera). Entomon, 3, 1–6.

    Google Scholar 

  33. Chari, N., Reddy, M. R. G., & Narayan, G. (1979). A comparative study of flight adaptations. In Vistas in molecular, solid state and Biophysics. A commemorative research volume in honour of Prof. Puranik, P.G (pp. 343–349).

    Google Scholar 

  34. Ellington, C. P. (1980). Vortices and hovering flight. Instationare Effekte An Schwingended Fluegeln, 64–101.

    Google Scholar 

  35. Baker, P. S., Gewecke, M., & Cooter, R. J. (1981). The natural flight of the migratory locust, Locusta migratoria L. Journal of Comparative Physiology,141(2), 233–237.

    Google Scholar 

  36. Ellington, C. P. (1984a). The aerodynamics of hovering inset flight II. Morphological parameters. Philosophical Transactions of the Royal Society. London, 13, 7–40.

    Google Scholar 

  37. Ellington, C. P. (1984b). The aerodynamics of hovering insect flight III. Kinematics. Philosophical Transactions of the Royal Society. London, 13, 41–78.

    Google Scholar 

  38. Ellington, C. P. (1984c). The aerodynamics of hovering insect flight V. A Vortex Philosophical Transactions of the Royal Society. London, 13(305), 115–144.

    Google Scholar 

  39. Casey, T. M., May, M. L., & Morgan, K. R. (1985). Flight energetics of euglossine bees in relation to morphology and wing stroke frequency. Journal of Experimental Biology, 116(1), 271–289.

    Article  Google Scholar 

  40. Brodsky, A. K. (1991). Vortex formation in the tethered flight of the peacock butterfly Inachis io L. (Lepidoptera, Nymphalidae) and some aspects of insect flight evolution. Journal of Experimental Biology, 161, 77–95.

    Article  Google Scholar 

  41. Brodsky, A. K. (1994). The evolution of insect flight. Oxford University Press.

    Google Scholar 

  42. Puranik, P. G., & Chari, N. (1986). Bio-aerodynamics of fliers. Hyderabad, India: National Book Enterprises.

    Google Scholar 

  43. Ravi, A. (1986). Flight dynamics and flight muscle metabolism in Chrysocorispurpureus (WESTW), a pentatomid bug. Ph.D. thesis, Kakatiya University, Warangal, India.

    Google Scholar 

  44. Vydehi, Y. (1992). Flight parameters, moment of inertia and some observations on flight muscle metabolism of tessaratoma javanica (Thunborg) a pentatomid bug. Ph.D. thesis. Kakatiya University, Warangal, India.

    Google Scholar 

  45. Dickinson, M. H., Lehmann, F. O., & Sane, S. (1999). Wing rotation and the aerodynamic basis of insect flight. Science, 284, 1954–1960.

    Google Scholar 

  46. Sane, S. P. (2003). Induced airflow in flying insects. Journal of Experimental Biology, 209, 32–42.

    Article  Google Scholar 

  47. Shyy, W., Lian, Y., Tang, J., Viieru, D., & Liu, H. (2008). Aerodynamics of low Reynolds number flyers (Vol. 22). Cambridge University Press, UK.

    Google Scholar 

  48. Mukherjee, I., & Omkar, S. N. (2011) An analytical model for the aeroelasticity of insect flapping. Structure Dynamics and Materials Conference (pp. 1–14). Denver, Colorado.

    Google Scholar 

  49. Tanaka, H. (2012). Flexible wing structures of simplified insect-sized flapping MAVs. In 2012 ICME International Conference on Complex Medical Engineering (CME) (pp. 397–401). IEEE.

    Google Scholar 

  50. Vanneste, T., Paquet, J. B., Grondel, S., & Cattan, E. (2012). Aeroelastic simulation of flexible flapping wing based on structural FEM and quasi steady aerodynamic model. In 28th International Congress of the Aeronautical Sciences (ICAS2012) (pp. 1–10).

    Google Scholar 

  51. Ho, S., Nassef, H., Pornsinsirirak, N., Tai, Y. C., & Ho, C. M. (2003). Unsteady aerodynamics and flow control for flapping wing flyers. Progress in Aerospace Sciences, 39(8), 635–681.

    Article  ADS  Google Scholar 

  52. Sibilski, K., Żurek, J., & Żyluk, A. (2010). Microelectromechanical flying insects—State of the art. In 27th International Congress of the Aeronautical Sciences, ICAS. IEEE.

    Google Scholar 

  53. Curet, O. M., Swartz, S. M., & Breuer, K. S. (2013). An aeroelastic instability provides a possible basis for the transition from gliding to flapping flight. Journal of The Royal Society Interface, 10(80), 2012–0940.

    Google Scholar 

  54. Sane, S. P. (2003). The aerodynamics of insect flight. The Journal of Experimental Biology, 206(23), 4191–4208.

    Article  Google Scholar 

  55. Shyy, W., Aono, H., Chimakurthi, S. K., Trizila, P., Kang, C. K., Cesnik, C. E., & Liu, H. (2010). Recent progress in flapping wing aerodynamics and aeroelasticity. Progress in Aerospace Sciences, 46(7), 284–327.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chari, N., Srinivas, P. (2021). Flight a Retrospect a Brief Review. In: Chari, N., Mukkavilli, P., Parayitam, L. (eds) Biophysics of Insect Flight. Springer Series in Biophysics, vol 22. Springer, Singapore. https://doi.org/10.1007/978-981-16-5184-7_2

Download citation

Publish with us

Policies and ethics