Skip to main content
Log in

Bioformation of 4-hydroxybenzoate from 4-chlorobenzoate by Alcaligenes denitrificans NTB-1

  • Environmental Microbiology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Summary

Strain NTB-1, identified as a Alcaligenes denitrificans sp., was isolated from a mixture of soil and sewage samples using 4-chlorobenzoate as sole carbon and energy source. Simultaneous adaptation experiments and enzyme studies revealed that 4-chlorobenzoate was converted to 4-hydroxybenzoate which was further oxidized yielding 3,4-dihydroxybenzoate. Bioformation of 4-hydroxybenzoate from 4-chlorobenzoate when 4-chlorobenzoate-grown cells were incubated with 4-chlorobenzoate under conditions of low and controlled oxygen concentrations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Baklashova TG, Koshcheenko KA, Skryabin GK (1984) Hydroxylation of indolyl-3-acetic acid by immobilized mycelium of Aspergillus niger. Appl Microbiol Biotechnol 19:217–223

    Google Scholar 

  • Bont JAM, Vorage MJAW, Hartmans S, van den Tweel WJJ (1986) Microbial degradation of 1,3-dichlorobenzene. Accepted for publication in Appl Environ Microbiol

  • Daum J, Kieslich K (1974) Process for the preparation of 5-hydroxy-l-tryptophan. US Patent 3,830,696

  • Engesser K-H, Schmidt E, Knackmuss H-J (1980) Adaptation of Alcaligenes eutrophus B9 and Pseudomonas sp B13 to 2-fluorobenzoate as growth substrate. Appl Environ Microbiol 39:68–73

    Google Scholar 

  • Faulkner JK, Woodcock D (1961) Fungal detoxification. Part V. Metabolism of o- and p-chlorophenoxyacetic acids by Aspergillus niger. J Chem Soc 5397–5400

  • Ghoshal D, You I-S, Chatterjee DK, Chakrabarty AM (1985) Microbial degradation of halogenated compounds. Science 228:135–142

    Google Scholar 

  • Guroff G, Kondo K, Daly J (1966) The production of metachlorotyrosine from para-chlorophenylalanine by phenylalanine hydroxylase. Biochem Biophys Res Commun 25:622–628

    Google Scholar 

  • Hagedorn S (1983) Production of para-cresol. European Patent Application 0,105,630

  • Hagedorn S (1984) Construction of novel mutant micro-organisms. European Patent Application 0,138,391

  • Johnston HW, Briggs GG, Alexander M (1972) Metabolism of 3-chlorobenzoic acid by a pseudomonad. Soil Biol Biochem 4:187–190

    Google Scholar 

  • Kaufman S (1961) The enzymic conversion of 4-fluorophenylalanine to tyrosine. Biochim Biophys Acta 51:619–621

    Google Scholar 

  • Keil H, Klages U, Lingens F (1981) Degradation of 4-chlorobenzoate by Pseudomonas sp. CBS3: induction of catabolic enzymes. FEMS Microbiol Lett 10:213–215

    Google Scholar 

  • Kersters K, De Ley J (1984) Genus Alcaligenes. In: Krieg NR (ed) Manual of Systematic Bacteriology. Vol. I. Williams & Wilkins, Baltimore, pp 361–373

    Google Scholar 

  • Klages U, Lingens F (1979) Degradation of 4-chlorobenzoic acid by a Nocardia species. FEMS Microbiol Lett 6:201–203

    Google Scholar 

  • Klibanov AM, Berman Z, Alberti BN (1981) Preparative hydroxylation of aromatic compounds catalysed by peroxidase. J Am Chem Soc 103:6263–6264

    Google Scholar 

  • Knackmuss H-J (1981) Degradation of halogenated and sulfonated hydrocarbons. In: Leisinger T, Cook AM, Hütter R, Nüesch J (eds) Microbial Degradation of Xenobiotics and Recalcitrant Compounds. Academic Press Inc, London, pp 189–212

    Google Scholar 

  • Kulla H, Lehky P (1985) Verfahren zur Herstellung von 6-hydroxynikotinsäure. European Patent Application 0,152,948

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with Folin phenol reagent. J Biol Chem 193:265–275

    CAS  PubMed  Google Scholar 

  • Markus A, Klages U, Krauss S, Lingens F (1984) Oxidation and dehalogenation of 4-chlorophenylacetate by a two-component enzyme system from Pseudomonas sp CBS3. J Bact 160:618–621

    Google Scholar 

  • Marks TS, Smith ARW, Quirk AV (1984a) Degradation of 4-chlorobenzoic acid by Arthrobacter sp. Appl Environ Microbiol 48:1020–1025

    Google Scholar 

  • Marks TS, Wait R, Smith ARW, Quirk AV (1984b) The origin of the oxygen incorporated during the dehalogenation/hydroxylation of 4-chlorobenzoate by an Arthrobacter sp. Biochem Biophys Res Commun 124:669–674

    Google Scholar 

  • Müller R, Thiele J, Klages U, Lingens F (1984) Incorporation of [18O]water into 4-hydroxybenzoic acid in the reaction of 4-chlorobenzoate dehalogenase from Pseudomonas spec CBS3. Biochem Biophys Res Commun 124:178–182

    Google Scholar 

  • Olah GA, Fung AP, Keuni T (1981) Oxyfunctionalization of hydrocarbons 11. Hydroxylation of benzene and alkylbenzenes with hydrogen peroxide in hydrogen fluoride/Boron trifluoride. J Org Chem 46:4305–4306

    Google Scholar 

  • Pshirkov SY, Boiko OI, Kiprianova EA, Starovoitov (1982) Transformation of l-tyrosine into l-dihydroxyphenylalanine by Pseudomonas cultures. Mikrobiologiya 51:272–274

    Google Scholar 

  • Reineke W, Knackmuss H-J (1984) Microbial metabolism of haloaromatics: isolation and properties of a chlorobenzene-degrading bacterium. Appl Environ Microbiol 47:395–402

    Google Scholar 

  • Ruisinger S, Klages U, Lingens F (1976) Abbau der 4-Chlorbenzoesäure durch eine Arthrobacter-Species. Arch Microbiol 110:253–256

    Google Scholar 

  • Shailubhai K, Sahasrabudhe SR, Vora KA, Modi VV (1983) Degradation of chlorinated derivatives of phenoxyacetic acid and benzoic acid by Aspergillus niger. FEMS Microbiol Lett 18:279–282

    Google Scholar 

  • Taylor SC (1982) Biochemical process. European Patent Application 0,076,606

  • Theriault RJ, Longfield TH (1967) Microbial conversion of acetanilide to 2′-hydroxyacetanilide and 4′-hydroxyacetanilide. Appl Microbiol 15:1431–1436

    Google Scholar 

  • Theriault RJ, Longfield TH (1973) Microbial hydroxylation of 5-anilino-1,2,3-thiatriazole. Appl Microbiol 25:606–611

    Google Scholar 

  • Tweel van den WJJ, Smits JP, Bont de JAM (1986) Microbial metabolism of d- and l-phenylglycine by Pseudomonas putida LW-4. Arch Microbiol 144:169–174

    Google Scholar 

  • Vilanova E, Manjon A, Iborra JL (1984) Tyrosine hydroxylase activity of immobilized tyrosinase on enzacryl-AA and CPG-AA supports: stabilization and properties. Biotechnol Bioeng 26:1306–1312

    Google Scholar 

  • Vishniac W, Santer M (1957) The thiobacilli. Bacteriol Rev 21:195–213

    Google Scholar 

  • Yoshida H, Tanaka Y, Nakayama K (1973) Production of 3,4-dihydroxyphenyl-l-alanine (l-DOPA) and its derivatives by Vibrio tyrosinaticus. Agr Biol Chem 37:2121–2126

    Google Scholar 

  • Yoshida H, Tanaka Y, Nakayama K (1974) Production of 3,4-dihydroxyphenyl-l-alanine (l-DOPA) by Pseudomonas melanogenum. Agr Biol Chem 38:455–462

    Google Scholar 

  • Zaitsev GM, Karasevich YN (1981a) Utilization of 4-chlorobenzoic acid by Arthrobacter globiformis. Mikrobiologiya 50:35–40

    Google Scholar 

  • Zaitsev GM, Karasevich YN (1981b) Preparative metabolism of 4-chlorobenzoic acid in Arthrobacter globiformis. Mikrobiologiya 50:423–428

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

van den Tweel, W.J.J., ter Burg, N., Kok, J.B. et al. Bioformation of 4-hydroxybenzoate from 4-chlorobenzoate by Alcaligenes denitrificans NTB-1. Appl Microbiol Biotechnol 25, 289–294 (1986). https://doi.org/10.1007/BF00253665

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00253665

Keywords

Navigation