Skip to main content
Log in

Evaluation of transport kinetics in lymphoscintigraphy: Follow-up study in patients with transplanted lymphatic vessels

  • Published:
European Journal of Nuclear Medicine Aims and scope Submit manuscript

Abstract

To quantitate visual findings in lymphoscintigraphy with 99mTc-labeled stannous sulfur colloids, a numeric index of transport kinetics was designed by combining visual assessment of five criteria: temporal and spatial distribution of the radionuclide, appearance time of lymph nodes, and graded visualization of lymph nodes and vessels. For assessment, scores were used ranging from 0 to 9. Thus, the resulting transport index (TI) ranged from 0 (normal) to 45 (pathological). TI in healthy extremities was less than 10.

Lymphoscintigraphy was performed routinely in healthy lower extremities to ensure normal drainage before transplantation. In 122 investigations of upper and lower extremities, TI was found to be very sensitive (97.4%). Specificity was 90.3%. An interobserver study in 179 investigations revealed a high correlation (r=0.96). A total of 23 patients underwent autologous lymphatic transplantation. The average decrease of TI was 5.9: 31.1 before and 25.2 after transplantation. This decrease of TI was correlated with a marked decrease of the volumes of the extremities (from 3423 ml to 2580 ml). Changes in TI and volume were significant (p0.05).

This method of evaluation has proved to be very sensitive, reproducible, and able to measure the transport capacity of only two or three transplanted lymph collectors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baumeister RGH, Seifert J, Hahn D (1981) Autotransplantation of lymphatic vessels. Lancet i:147

    Google Scholar 

  2. Baumeister RGH, Seifert J, Wiebecke B (1981) Homologous and autologous experimental lymph vessel transplantation — initial experiences. Int J Microsurg 3:19

    Google Scholar 

  3. Baumeister RGH, Seifert J, Wiebecke B, Hahn D (1981) Experimental basis and first application of clinical lymph vessel transplantation of secondary lymphedema. World J Surg 5:401–407

    Google Scholar 

  4. Bergqvist L, Strand S, Persson BRR (1983) Particle sizing and biokinetics of interstitial lymphoscintigraphic agents. Semin Nucl Med 23:9–19

    Google Scholar 

  5. Bronskill MJ (1983) Radiation dose estimates for interstitial radiocolloid lymphoscintigraphy. Semin Nucl Med 23:20–25

    Google Scholar 

  6. Bronskill MJ, Harauz G, Ege GN (1979) Computerized internal mammary lymphoscintigraphy in radiation treatment planning of patients with breast carcinoma. Int J Radiat Oncol Biol Phys 5:573–579

    Google Scholar 

  7. Dworkin HJ (1982) Potential for lymphoscintigraphy. J Nucl Med 23:936–938

    Google Scholar 

  8. Ege GN (1983) Lymphoscintigraphy—techniques and applications in the management of breast carcinoma. Semin Nucl Med 23:26–34

    Google Scholar 

  9. Kuhnke E (1976) Volumenbestimmung aus Umfangsmessungen. Folia Angiol 24:228

    Google Scholar 

  10. McConnell RW, McConnell BG, Kim EE (1983) Other applications of interstitial lymphoscintigraphy. Semin Nucl Med 23:70–74

    Google Scholar 

  11. zum Winkel K (1972) Lymphologie mit Radionukliden. Verlag Hildegard Hoffmann, Berlin:28

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kleinhans, E., Baumeister, R.G.H., Hahn, D. et al. Evaluation of transport kinetics in lymphoscintigraphy: Follow-up study in patients with transplanted lymphatic vessels. Eur J Nucl Med 10, 349–352 (1985). https://doi.org/10.1007/BF00251310

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00251310

Key words

Navigation