Skip to main content
Log in

In-lake alkalinity generation by sulfate reduction: A paleolimnological assessment

  • Published:
Water, Air, and Soil Pollution Aims and scope Submit manuscript

Abstract

The generation of alkalinity by SO4 reduction and net storage of reduced S in lake sediments has been estimated from an analysis of sediment cores from 16 lakes in ME, VT, NY, MI, MN, and WY. The cores have been dated by 210Pb. The rate of pre-1850 (background) storage of S in lake sediments suggests that alkalinity contribution to lake water from this process ranged from 0.2 to 9.3 geq L−1, with an average of 4 geq L−1, Background values are similar for all lakes and remain low in the WY lakes up to the present. Maximum alkalinity contributions recorded in sediment, from upper mid-west and eastern lakes, dated between 1850 and 1985 are between 0.4 and 33 geq L−1, with a lake mean maximum of 9.9 geq L−1, Significant increases in recent S storage only occur in eastern lakes. Average values for net S accumulation in the sediment of most lakes for post-1850 sediment are typically less than half of maximum values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Appleby, P. G. and Oldfield, F.: 1983, Hydrobiologia 103, 53.

    Google Scholar 

  • Brewer, G. F.: 1986, ‘Sulfur, Heavy Metal, and Major Element Chemistry of Sediments from Four Eastern Maine Ponds’, unpublished M.S. Thesis, Dept. of Geol. Sc., Univ. Maine, 139 p.

  • Buckley, D. E. and Cranston, R. E.: 1971, Chem. Geol. 7, 273.

    Google Scholar 

  • Carignan, R.: 1985, Nature 317, 158.

    Google Scholar 

  • Carignan, R. and Tessier, A.: 1985, Science 228, 1524.

    Google Scholar 

  • Charles, D. F. and Whitehead, D. R.: 1986a, Paleoecological Investigation of Recent Lake Acidification —Methods and Project Description, Interim Rept. for Project 2174–10, Electric Power Research Institute, Palo Alto, CA.

    Google Scholar 

  • Charles, D. F. and Whitehead, D. R.: 1986b, Hydrobiologia 143, 13.

    Google Scholar 

  • Charles, D. F. et al.: 1986, Biogeochemistry.

  • Cook, R. B. et al.: 1983, Ecol. Bull. 35, 115.

    Google Scholar 

  • Cook, R. B., Kelley, C. A., Kingston, J. C., and Kreis, R. G., Jr.: 1987, Biogeochemistry 4, 97.

    Google Scholar 

  • Cosby, B. J., Hornberger, G. M., Galloway, J. N., and Wright, R. F.: 1985, Water Resour. Res. 21, 51.

    Google Scholar 

  • Davis, R. B. (plus 15 authors): 1987, A Comparative Paleolimnological Study of the Impacts of Air Pollution on Three Northern New England Lakes, unpublished report to the PIRLA project (see Charles and Whitehead, 1986).

  • Eakins, J. D. and Morrison, R. T.: 1978, Intern. Jour. Appl. Radiat. Isotopes 29, 5331.

    Google Scholar 

  • Eilers, J. M., Kanciruk, P., McCord, R. A., Overton, W. S., Hook, L., Blick, D. J., Brakke, D. F., Kellar, P. E., DeHaan, M. D., Silverstein, M. E., and Landers, D. H.: 1987, Characteristics of Lakes in the Western United States, USEPA, EPA/600/3-86/054B, 425p.

  • Gherini, S. A., Mok, L., Hudson, R. J. M., Davis, G. F., Chen, C. W., Goldstein, R. A.: 1985, Water, Air, and Soil Pollut. 26, 425.

    Google Scholar 

  • Henriksen, A.: 1982, Changes in Base Cation Concentrations Due to Freshwater Acidification, Acid Rain Research Rept. 1, Norwegian Institute for Water Research, 50 p.

  • Holdren, G. R., Brunelle, T. M., Matisoff, G., and Whalen, M.: 1984, Nature 311, 245.

    Google Scholar 

  • Johnson, D. W., Cole, D. W., Van Miogroet, H., and Horng, F. W.: 1986, Soil Sci. Soc. Amer. J. 3, 776.

    Google Scholar 

  • Kahl, J. S.: 1982, ‘Metal Input and Mobilization in Two Acid-Stressed Lake Watersheds in Maine’, unpublished MS Thesis, Dept. of Geol. Sc., Univ. Maine.

  • Kanciruk, P., Eilers, J. M., McCord, R. A., Landers, D. H., Brakke, D. F., and Linthurst, R. A.: 1986, Characteristics of Lakes in the Eastern United States, USEPA, EPA/600/4-86/007c, 439p.

  • Kreis, R. G., Jr.: 1986, ‘Variability Study — Interim Results’, unpublished report to the PIRLA project (see Charles and Whitehead, 1986a).

  • Landers, D. H., David, M. B., and Mitchell, M. J.: 1983, Intern. Jour. Envir. Anal. Chem. 14, 245.

    Google Scholar 

  • Landers, D. H. and Mitchell, M. J.: 1988, Hydrobiologia.

  • McFee, W. W., 1979, Sensitivity of Soil Regions to Long Term Acid Precipitation, U.S. Environ. Prot. Agency Decision Series Rept.

  • Mitchell, M. J., David, M. B., and Uutala, A. J.: 1985, Hydrobiologia 121, 121.

    Google Scholar 

  • Mitchell, M. J., Schindler, S. C., Owen, J. S., and Norton, S. A.: 1988, Hydrobiologia 157, 219.

    Google Scholar 

  • Mortimer, C. H.: 1941, J. Ecol. 30, 147.

    Google Scholar 

  • National Atmospheric Deposition Program, 1986: NADP/NTN Annual Data Summary. Precipitation Chemistry in the United States, 1984, Colorado State University, 240 p.

  • Nilsson, I., Miller, H. G., and Miller, J. D.: 1982, Oikos 39, 40.

    Google Scholar 

  • Norton, S. A.: 1980, ‘Geologic Factors Controlling the Sensitivity of Aquatic Ecosystems to Acidic Precipitation’, in D. S. Shriner et al. (eds.), Atmospheric Sulfur Deposition, Ann Arbor Science Pub., Michigan, pp. 521–531.

    Google Scholar 

  • Norton, S. A. and Kahl, J. S.: 1987, Geochemical Analysis of Sediment Cores, Wind River Mountains, Wyoming, final Rept. to the US Forest Service.

  • Nriagu, J. O. and Coker, R. D.: 1983, Nature 303, 692.

    Google Scholar 

  • Nriagu, J. O. and Soon, Y. K.: 1985, Nature 303, 692.

    Google Scholar 

  • Rudd, J. W. M., Kelly, C. A., St. Louis, V., Hesslein, R. H., Furutani, A., and Holoka, M. H.: 1986a, Limnol. Oceanogr. 31, 1267.

    Google Scholar 

  • Rudd, J. W. M., Kelly, C. A., and Furutani, A.: 1986b, Limnol. Oceanogr. 3331, 1281.

    Google Scholar 

  • Schindler, D. W.: 1986, Water, Air, and Soil Pollut. 30, 931.

    Google Scholar 

  • Schnoor, J. L., Palmer, W. D., Jr., and Glass, G. E.: 1984, in J. L. Schnoor (ed.), Modelling of Total Acid Precipitation Inputs, Butterworth, Stoneham, MA, pp. 175–204.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Norton, S.A., Mitchell, M.J., Kahl, J.S. et al. In-lake alkalinity generation by sulfate reduction: A paleolimnological assessment. Water Air Soil Pollut 39, 33–45 (1988). https://doi.org/10.1007/BF00250946

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00250946

Keywords

Navigation