Skip to main content
Log in

Photoproduction of H2 from acetate by syntrophic cocultures of green sulfur bacteria and sulfur-reducing bacteria

  • Original Papers
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

The marine green sulfur bacterium Chlorobium vibrioforme strain 1930 produced H2 and elemental sulfur from sulfide or thiosulfate under N limitation in the light. H2 production depended on nitrogenase and occurred only in the absence of ammonia. Methionine sulfoximine, an inhibitor of glutamine synthetase, prevented the switch-off by ammonia. In defined syntrophic cocultures of the acetate-oxidizing, sulfur-reducing bacterium Desulfuromonas acetoxidans with green sulfur bacteria, H2 was produced from acetate via a light-driven sulfur cycle. The sulfur-reducing bacterium could not be replaced by sulfate-reducing bacteria in these experiments. In a coculture of the marine Chlorobium vibrioforme strain 1930 and the sulfur-reducing bacterium Desulfuromonas acetoxidans strain 5071, optimum long-term H2 production from acetate was obtained with molecular nitrogen as N source, at low light intensity (110 μmol · m-2 · s-1), in sulfide-reduced mineral medium (2 mM Na2S) at pH 6.8. Traces of sulfide (10 μM) were sufficient to keep the sulfur cycle running. The coculture formed no poly-β-hydroxyalkanoates (PHA), but 20%–40% polysaccharide per cell dry mass. Per mol acetate added, the coculture formed 3.1 mol of H2 (78% of the theoretical maximum). Only 8% of the reducing equivalents was incorporated into biomass. The maximum rate of H2 production was 1300 ml H2 per day and g cell dry mass.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

MOPS:

2-(N-morpholino) propane sulfonic acid

MSX:

Methionine sulfoximine

PHA:

poly-β-hydroxyalkanoates

References

  • Biebl H, Pfennig N (1978) Growth yields of green sulfur bacteria in mixed cultures with sulfur and sulfate reducing bacteria. Arch Microbiol 117: 9–16

    Google Scholar 

  • Burris R H (1991) Nitrogenases. J Biol Chem 266: 9339–9342

    Google Scholar 

  • Chadwick L J, Irgens R L (1991) Hydrogen gas production by an Ectothiorhodospira vacuolata strain. Appl Environ Microbiol 57: 594–596

    Google Scholar 

  • Chaney A L, Marbach E P (1962) Modified reagents for the determination of urea and ammonia. Clin Chem 8: 130–132

    Google Scholar 

  • Cypionka H, Pfennig N (1986) Growth yields of Desulfotomaculum orientis with hydrogen in chemostat culture. Arch Microbiol 143: 296–399

    Google Scholar 

  • Gest H, Ormerod J G, Ormerod K S (1962) Photometabolism of Rhodospirillum rubrum: light-dependent dissimilation of organic compounds to carbon dioxide and molecular hydrogen by an anaerobic citric acid cycle. Arch Biochem Biophys 97: 21–33

    Google Scholar 

  • Gotto J W, Yoch D C (1985) Regulation of nitrogenase activity by covalent modification in Chromatium vinosum. Arch Microbiol 141: 40–43

    Google Scholar 

  • Gray B H, Fowler C F, Nugent N A, Rigopoulos N, Fuller R C (1973) Reevaluation of Chloropseudomonas ethylica strain 2-K. Int J Syst Bacteriol 23: 256–264

    Google Scholar 

  • Hansen T A, Veldkamp H (1973) Rhodopseudomonas sulfidophila, nov. spec., a new species of the purple nonsulfur bacteria. Arch Microbiol 92: 45–58

    Google Scholar 

  • Heda G D, Madigan M T (1986) Aspects of nitrogen fixation in Chlorobium. Arch Microbiol 143: 330–336

    Google Scholar 

  • Herbert D, Phipps P J, Strange R E (1971) Chemical analysis of microbial cells. In: Norris J R, Ribbons D W (eds) Methods in microbiology, vol. 5B, Academic Press, London

    Google Scholar 

  • Ivanovskii R N, Fedorova E A (1984) Ammonium assimilation by the green sulfur bacterium Chlorobium limicola forma thiosulfatophilum. Microbiologiya 55: 14–19 (Engl. transl.)

    Google Scholar 

  • Kanemoto R H, Ludden P W (1987) Amino acid concentration in Rhodospirillum rubrum during expression and switch-off of nitrogenase activity. J Bacteriol 169: 3035–3042

    Google Scholar 

  • Keppen O I, Lebedeva N V, Pethukov S, Rodionov Yu V (1985) Nitrogenase activity in the green bacterium Chlorobium limicola. Microbiologiya 54: 28–32 (Engl. transl.)

    Google Scholar 

  • Klein G, Klipp W, Jahn A, Steinborn B, Oelze J (1991) The relationship of biomass, polysaccharide and H2 formation in the wild-type and nifA/nifB mutants of Rhodobacter capsulatus. Arch Microbiol 155: 477–482

    Google Scholar 

  • Liebergesell M, Hustede E, Timm A, Steinbüchel A, Fuller R C, Lenz R W, Schlegel H G (1991) Formation of poly(3-hyxdroxyalkanoates) by phototrophic and chemolithotrophic bacteria. Arch Microbiol 155: 415–421

    Google Scholar 

  • Macler B A, Pelroy R A, Bassham J A (1979) Hydrogen formation in nearly stoichiometric amounts from glucose by a Rhodopseudomonas sphaeroides mutant. J Bacteriol 138: 446–452

    Google Scholar 

  • Matheron R, Baulaigue R (1983) Photoproduction d'hydrogène sur soufre et sulfure par des Chromatiaceae. Arch Microbiol 135: 211–214

    Google Scholar 

  • Merric J M (1978) Metabolism of reserve material. In: Clayton R K, Sistrom W R (eds) The photosynthetic bacteria. Plenum Press, New York London, pp 199–219

    Google Scholar 

  • Nesbakken T, Kolsaker P, Ormerod J (1988) Mechanism of biosynthesis of 2-oxo-3-methylvalerate in Chlorobium vibrioforme. J Bacteriol 170: 3287–3290

    Google Scholar 

  • Nitschke W, Rutherford A W (1991) Photosynthetic reaction centres: variations on a common structural theme? TIBS 16: 241–245

    Google Scholar 

  • Otha Y, Mitsui A (1981) Enhancement of hydrogen photoproduction by marine Chromatium sp. Miamy PBS 1071 grown in molecular nitrogen. In: Moo-Young M, Robinson C W (eds) Advances in biotechnology, Vol. 2, Pergamon Press, Toronto, pp 303–307

    Google Scholar 

  • Overmann J, Cypionka H, Pfennig N (1991) An extremely low light adapted phototrophic sulfur bacterium from the Black Sea. Limnol Oceanogr (in press)

  • Pfennig N (1967) Photosynthetic bacteria. Ann Rev Microbiol 21: 285–324

    Google Scholar 

  • Pfennig N (1975) The photolithotrophic bacteria and their role in the sulfur cycle. Plant Soil 43: 1–16

    Google Scholar 

  • Pfennig N (1978) Rhodocyclus purpureus, gen. nov. and sp. nov., a ring-shaped vitamin B12-requiring member of the family Rhodospirillaceae. Int J Syst Bacteriol 28: 283–288

    Google Scholar 

  • Pfennig N, Biebl H (1976) Desulfuromonas acetoxidans, gen. nov. and sp. nov., a new anaerobic, sulfur-reducing, acetate-oxidizing bacterium. Arch Microbiol 110: 3–12

    Google Scholar 

  • Schink B, Pfennig N (1982) Fermentation of trihydroxybenzenes by Pelobacter acidigallici gen. nov. sp. nov., a new strictly anaerobic, non-sporeforming bacterium. Arch Microbiol 133: 195–201

    Google Scholar 

  • Schlegel H G, Lafferty R L, Krauss I (1970) The isolation of mutants not accumulating poly-β-hydroxybutyric acid. Arch Microbiol 71: 283–294

    Google Scholar 

  • Schmidt K, Liaaen-Jensen S, Schlegel H G (1963) Die Carotinoide der Thiorhodaceae. 1. Okenon als Hauptcarotenoid von Chromatium okenii Perty. Arch Microbiol 46: 117–126

    Google Scholar 

  • Seitz H J, Schink B, Conrad R (1988) Thermodynamics of hydrogen metabolism in methanogenic cocultures degrading ethanol or lactate. FEMS Microbiol Lett 55: 119–124

    Google Scholar 

  • Shaposhnikov V V, Kondrat'eva E N, Fedorov V D (1960) A new species of green sulphur bacteria. Nature 187: 167–168

    Google Scholar 

  • Steinborn B, Oelze J (1989) Nitrogenase and photosynthetic activities of chemostat cultures of Rhodobacter capsulatus 37b4 grown under different illuminations. Arch Microbiol 152: 100–104

    Google Scholar 

  • Stevens P, Plovie N, DeVos P, DeLey J (1986) Photoproduction of molecular hydrogen by Rhodobacter sulfidophilus. Syst Appl Microbiol 8: 19–23

    Google Scholar 

  • Stewart W D P, Fitzgerald G P, Burris R H (1968) Acetylene reduction bu nitrogen-fixing blue green algae. Arch Microbiol 62: 336–348

    Google Scholar 

  • Vignais P M, Colbeau A, Willison J C, Jouanneau Y (1985) Hydrogenase, nitrogenase, and hydrogen metabolism in the photosynthetic bacteria. In: Rose A H, Tempest D W (eds) Advances in microbiol physiology, vol. 26. Academic Press, London, pp 155–234

    Google Scholar 

  • Vijayaragavan R (1987) Photoproduction of hydrogen by Rhodobacter capsulatus B100. Diploma thesis, Tamil Nadu Agricultural University, Coimbatore, India

  • Widdel F (1983) Methods for enrichment and pure culture isolation of filamentous gliding sulfate-reducing bacteria. Arch Microbiol 134: 282–285

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Warthmann, R., Cypionka, H. & Pfennig, N. Photoproduction of H2 from acetate by syntrophic cocultures of green sulfur bacteria and sulfur-reducing bacteria. Arch. Microbiol. 157, 343–348 (1992). https://doi.org/10.1007/BF00248679

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00248679

Key words

Navigation