Skip to main content
Log in

Oxygen evolution and hypochlorite production on Ru-Pt binary oxides

  • Papers
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

The electrocatalytic activities of Ru-Pt binary oxide electrodes prepared by thermal decomposition for both oxygen and chlorine evolution reactions (OER and CER) were investigated by cyclic voltammetry (CV) and log i/E relationships (Tafel study). Both CV and Tafel studies revealed that the electrodes from the coating solutions with 60 and 20 mol % Pt content possessed the maximum apparent activity for OER and optimal apparent activity for CER/hypochlorite production, respectively. The specific activity (i/q *) revealed that mixing of the RuO2 and PtO x had no synergistic effects for OER due to the occurrence of phase segregation, which was revealed by element mapping/surface morphologies and Auger electron spectroscopy. Lower current efficiencies for hypochlorite production were found on the freshly prepared binary electrodes (type I electrodes) than on those having been treated by repetitive CVs (type II electrodes). Stability testing of both type I and II electrodes was measured in 0.5 m NaCl solution at 300 mA cm−2 for 480 h, indicating that both type I and II electrodes are quite stable under the above conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H.-J. Heidrich, L. Muller and B. I. Podlovchenko, J. Appl. Electrochem. 20 (1990) 686 and reference cited therein.

    Google Scholar 

  2. S. Trasatti, Electrochim. Acta 32 (1987) 369.

    Google Scholar 

  3. J. A. Harrison, D. L. Caldwell and R. E. White, —ibid. 28 (1983) 1561.

    Google Scholar 

  4. Idem, —ibid. 29 (1984) 203.

    Google Scholar 

  5. H. B. Beer, US Patent 3 711 385.

  6. K. J. O'Leary, US Patent 3 776 834.

  7. S. Saito, K. Aue and N. Shimojo, US Patent 4 061 558.

  8. H. B. Beer, US Patent 4 425 2117.

  9. S. Trasatti, Electrochim. Acta 36 (1991) 225.

    Google Scholar 

  10. F.-B. Li, A. R. Hillman and S. D. Lubetkin, —ibid. 37 (1992) 2715.

    Google Scholar 

  11. T. A. F. Lassali, J. F. C. Boodts, S. C. de Castro, R. Landers and S. Trasatti, —ibid. 39 (1994) 95.

    Google Scholar 

  12. Standard Methods for the Examination of Water and Waste-water’, APHA 16th edn. (1985) p. 426.

  13. T.-C. Wen and C.-C. Hu, J. Electrochem. Soc. 139 (1992) 2158.

    Google Scholar 

  14. L. D. Burke and J. F. O'Neill, J. Electroanal. Chem. 101 (1979) 341.

    Google Scholar 

  15. R. Kötz and S. Stucki, Electrochim. Acta 31 (1986) 1311.

    Google Scholar 

  16. L. D. Burke and O. J. Murphy, J. Electroanal. Chem. 96 (1979) 19.

    Google Scholar 

  17. S. F. Cogan and R. D. Rauh, ‘Large-Area Chromogenics: Materials and Devices for Transmittance Control’ (edited by C. M. Lampert and C. G. Granqvist), SPIE Institutes for Advanced Optical Technologies 4 (1988) 482.

  18. L. D. Burke and M. B. C. Roche, J. Electroanal. Chem. 259 (1983) 89.

    Google Scholar 

  19. A. A. El-Shafei, S. A. Abd. El-Maksoud and M. N. H. Moussa, —ibid. 336 (1992) 73.

    Google Scholar 

  20. L. D. Burke and K. J. O'Dwyer, Electrochim. Acta 34 (1989) 1659.

    Google Scholar 

  21. L. D. Burke, J. K. Casey and J. A. Morrissey, —ibid. 38 (1993) 897.

    Google Scholar 

  22. C.-C. Hu and T.-C. Wen, J. Electrochem. Soc. 142 (1995) 1376.

    Google Scholar 

  23. Idem., Electrochim. Acta 40 (1995) 495.

    Google Scholar 

  24. T.-C. Wen and C.-C. Hu, J. Electrochem. Soc. 140 (1993) 998.

    Google Scholar 

  25. S. Trasatti and G. Lodi, ‘Electrodes of Conductive Metallic Oxides, Part A’ (edited by S. Trasatti eds), Elsevier, Amsterdam (1980) p. 301.

    Google Scholar 

  26. J. C. F. Boodts and S. Trasatti, J. Appl. Electrochem. 19 (1989) 255.

    Google Scholar 

  27. M. E. G. Lyons and L. D. Burke, J. Chem. Soc. Faraday Trans. 1 83 (1987) 299.

    Google Scholar 

  28. C.-C. Hu, Y.-S. Lee and T.-C. Wen, J. Electrochem. Soc. submitted.

  29. J. F. C. Boodts and S. Trasatti, J. Electrochem. Soc. 137 (1990) 3784.

    Google Scholar 

  30. A. E. Bolzan and A. J. Arvia, J. Electroanal. Chem. 375 (1994) 157.

    Google Scholar 

  31. F. Hine, M. Yasuda and T. Yoshida, J. Electrochem. Soc. 124 (1977) 500.

    Google Scholar 

  32. W. A. Gerrard and B. C. H. Steele, J. Appl. Electrochem. 8 (1978) 417.

    Google Scholar 

  33. J. Augustynski, L. Balsenc and J. Hinden, J. Electrochem. Soc. 125 (1978) 1093.

    Google Scholar 

  34. L. C. Schumacher, I. B. Holzhueter, I. R. Hill and M. J. Dignam, Electrochim. Acta 35 (1990) 975.

    Google Scholar 

  35. N. Kamiya, M. Obara, K.-I. Ota, T. Takata and T. Endo, Denki Kagaku 60 (1992) 467.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hu, C.C., Lee, C.H. & Wen, T.C. Oxygen evolution and hypochlorite production on Ru-Pt binary oxides. J Appl Electrochem 26, 72–82 (1996). https://doi.org/10.1007/BF00248191

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00248191

Keywords

Navigation