Skip to main content
Log in

Sporosarcina jeotgali sp. nov., Sporosarcina oncorhynchi sp. nov., and Sporosarcina trichiuri sp. nov., Isolated from Jeotgal, a Traditional Korean Fermented Seafood

  • Evolutionary Microbiology and Systematics
  • Published:
Journal of Microbiology Aims and scope Submit manuscript

Abstract

Three novel, Gram-stain-positive, obligate aerobic, catalase- and oxidase-positive bacterial strains, designated B2O-1T, T2O-4T, and 0.2-SM1T-5T, were isolated from jeotgal, a traditional Korean fermented seafood. Strains B2O-1T, T2O-4T, and 0.2-SM1T-5T exhibited distinct colony colors, characterized by pink, yellow, and red opaque circular colonies, respectively. Phylogenetic analysis revealed that three strains formed a paraphyletic clade within the genus Sporosarcina and shared < 99.0% similarity with Sporosarcina aquimarina KCTC 3840T and Sporosarcina saromensis KCTC 13119T in their 16S rRNA gene sequences. The three strains exhibiting Orthologous Average Nucleotide Identity values < 79.3% and digital DNA-DNA hybridization values < 23.1% within the genus Sporosarcina affirmed their distinctiveness. Strains B2O-1T, T2O-4T, and 0.2-SM1T-5T contained MK-7 as a sole respiratory menaquinone and A4α type peptidoglycan based on lysine with alanine, glutamic acid, and aspartic acid. The common polar lipids include diphosphatidylglycerol, phosphatidylglycerol, and phosphatidylethanolamine. Strain T2O-4T contained one unidentified phospholipid, whereas strain 0.2-SM1T-5T contained two unidentified phospholipids. Cellular fatty acid profiles, with C15:0 anteiso as the major fatty acid, supported the affiliation of the three strains to the genus Sporosarcina. Based on the polyphasic characteristics, strains B2O-1T (= KCTC 43506T = JCM 36032T), T2O-4T (= KCTC 43489T = JCM 36031T), and 0.2-SM1T-5T (= KCTC 43519T = JCM 36034T) represent three novel species within the genus Sporosarcina, named Sporosarcina jeotgali sp. nov., Sporosarcina oncorhynchi sp. nov., and Sporosarcina trichiuri sp. nov., respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

All results generated in this study are included in the article and supplementary information. GenBank data generated in this study are available from NCBI (https://www.ncbi.nlm.nih.gov/). The accession numbers can be found in the Accession Numbers section of this article.

References

  • An, S. Y., Haga, T., Kasai, H., Goto, K., & Yokota, A. (2007). Sporosarcina saromensis sp. nov., an aerobic endospore-forming bacterium. International Journal of Systematic and Evolutionary Microbiology, 57, 1868–1871.

    Article  PubMed  Google Scholar 

  • Aziz, R. K., Bartels, D., Best, A. A., DeJongh, M., Disz, T., Edwards, R. A., Formsma, K., Gerdes, S., Glass, E. M., Kubal, M., et al. (2008). The RAST Server: Rapid annotations using subsystems technology. BMC Genomics, 9, 75.

    Article  PubMed  PubMed Central  Google Scholar 

  • Beijerinck, M. W. (1901). Anhäufungsversuche mit Ureumbakterien. Ureumspaltung durch Urease und Katabolismus. Zentralblatt Für Bakteriologie, Parasitenkunde, Infektionskrankheiten Und Hygiene, Abteilung II, 7, 33–61.

    Google Scholar 

  • Buchfink, B., Xie, C., & Huson, D. H. (2015). Fast and sensitive protein alignment using DIAMOND. Nature Methods, 12, 59–60.

    Article  CAS  PubMed  Google Scholar 

  • Chun, J., Oren, A., Ventosa, A., Christensen, H., Arahal, D. R., da Costa, M. S., Rooney, A. P., Yi, H., Xu, X. W., De Meyer, S., et al. (2018). Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. International Journal of Systematic and Evolutionary Microbiology, 68, 461–466.

    Article  CAS  PubMed  Google Scholar 

  • Collins, M. D., & Jones, D. (1981). Distribution of isoprenoid quinone structural types in bacteria and their taxonomic implication. Microbiological Reviews, 45, 316–354.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Felsenstein, J. (1981). Evolutionary trees from DNA sequences: A maximum likelihood approach. Journal of Molecular Evolution, 17, 368–376.

    Article  CAS  PubMed  Google Scholar 

  • Finn, R. D., Clements, J., & Eddy, S. R. (2011). HMMER web server: Interactive sequence similarity searching. Nucleic Acids Research, 39, W29–W37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fitch, W. M. (1971). Toward defining the course of evolution: Minimum change for a specific tree topology. Systematic Biology, 20, 406–416.

    Article  Google Scholar 

  • Goodfellow, M., Collins, M. D., & Minnikin, D. E. (1976). Thin-layer chromatographic analysis of mycolic acid and other long-chain components in whole-organism methanolysates of coryneform and related taxa. Journal of General Microbiology, 96, 351–358.

    Article  CAS  PubMed  Google Scholar 

  • Halebian, S., Harris, B., Finegold, S. M., & Rolfe, R. D. (1981). Rapid method that aids in distinguishing Gram-positive from Gram-negative anaerobic bacteria. Journal of Clinical Microbiology, 13, 444–448.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hall, T. A. (1999). BIOEDIT: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series, 41, 95–98.

    CAS  Google Scholar 

  • Kämpfer, P., Falsen, E., Lodders, N., & Schumann, P. (2010). Sporosarcina contaminans sp. nov. and Sporosarcina thermotolerans sp. nov., two endospore-forming species. International Journal of Systematic and Evolutionary Microbiology, 60, 1353–1357.

    Article  PubMed  Google Scholar 

  • Kim, M. S., Roh, S. W., & Bae, J. W. (2010). Halomonas jeotgali sp. nov., a new moderate halophilic bacterium isolated from a traditional fermented seafood. Journal of Microbiology, 48, 404–410.

    Article  CAS  PubMed  Google Scholar 

  • Kluyver, A. J., & Van Niel, C. B. (1936). Prospects for a natural system of classification of bacteria. Zentralblatt Fur Bakteriologie, Parasitenkunde, Infektionskrankheiten Und Hygiene, 94, 369–403.

    Google Scholar 

  • Komagata, K., & Suzuki, K. I. (1988). Lipid and Cell-Wall Analysis in Bacterial Systematics. In R. R. Colwell & R. Grigorova (Eds.), Methods in Microbiology (Vol. 19, pp. 161–207). Academic Press.

    Google Scholar 

  • Koo, O. K., Lee, S. J., Chung, K. R., Jang, D. J., Yang, H. J., & Kwon, D. Y. (2016). Korean traditional fermented fish products: Jeotgal. Journal of Ethnic Foods, 3, 107–116.

    Article  Google Scholar 

  • Kwon, S. W., Kim, B. Y., Song, J., Weon, H. Y., Schumann, P., Tindall, B. J., Stackebrandt, E., & Fritze, D. (2007). Sporosarcina koreensis sp. nov. and Sporosarcina soli sp. nov., isolated from soil in Korea. International Journal of Systematic and Evolutionary Microbiology, 57, 1694–1698.

    Article  CAS  PubMed  Google Scholar 

  • Lane, D. J. (1991). 16S/23S rRNA sequencing. In E. Stackebrandt & M. Goodfellow (Eds.), Nucleic acid techniques in bacterial systematics (pp. 115–175). Wiley.

    Google Scholar 

  • Lee, I., Kim, Y. O., Park, S. C., & Chun, J. (2016). OrthoANI: An improved algorithm and software for calculating average nucleotide identity. International Journal of Systematic and Evolutionary Microbiology, 66, 1100–1103.

    Article  CAS  PubMed  Google Scholar 

  • Li, Z., Mertens, K. N., Nézan, E., Chomérat, N., Bilien, G., Iwataki, M., & Shin, H. H. (2019). Discovery of a new clade nested within the genus Alexandrium (Dinophyceae): Morpho-molecular characterization of Centrodinium punctatum (Cleve) F.J.R. Taylor. Protist, 170, 168–186.

    Article  PubMed  Google Scholar 

  • Meier-Kolthoff, J. P., Auch, A. F., Klenk, H. P., & Göker, M. (2013). Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics, 14, 60.

    Article  PubMed  PubMed Central  Google Scholar 

  • Na, S. I., Kim, Y. O., Yoon, S. H., Ha, S. M., Baek, I., & Chun, J. (2018). UBCG: Up-to-date bacterial core gene set and pipeline for phylogenomic tree reconstruction. Journal of Microbiology, 56, 280–285.

    Article  CAS  PubMed  Google Scholar 

  • Price, M. N., Dehal, P. S., & Arkin, A. P. (2009). FastTree: Computing large minimum evolution trees with profiles instead of a distance matrix. Molecular Biology and Evolution, 26, 1641–1650.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saitou, N., & Nei, M. (1987). The neighbor-joining method: A new method for reconstructing phylogenetic trees. Molecular Biology and Evolution, 4, 406–425.

    CAS  PubMed  Google Scholar 

  • Sasser, M. (1990). Identification of bacteria by gas chromatography of cellular fatty acids. MIDI Technical Note 101. Newark, Delaware, USA.

  • Schaeffer, A. B., & Fulton, M. D. (1933). A simplified method of staining endospores. Science, 77, 194.

    Article  CAS  PubMed  Google Scholar 

  • Seemann, T. (2014). Prokka: Rapid prokaryotic genome annotation. Bioinformatics, 30, 2068–2069.

    Article  CAS  PubMed  Google Scholar 

  • Staneck, J. L., & Roberts, G. D. (1974). Simplified approach to identification of aerobic actinomycetes by thin-layer chromatography. Applied Microbiology, 28, 226–231.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun, Y., Zhao, Q., Zhi, D., Wang, Z., Wang, Y., Xie, Q., Wu, Z., Wang, X., Li, Y., Yu, L., et al. (2017). Sporosarcina terrae sp. nov., isolated from orchard soil. International Journal of Systematic and Evolutionary Microbiology, 67, 2104–2108.

    Article  CAS  PubMed  Google Scholar 

  • Tamura, K., Stecher, G., & Kumar, S. (2021). MEGA11: Molecular evolutionary genetics analysis version 11. Molecular Biology and Evolution, 38, 3022–3027.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tindall, B. J. (1990). Lipid composition of Halobacterium lacusprofundi. FEMS Microbiology Letters, 66, 199–202.

    Article  CAS  Google Scholar 

  • Tittsler, R. P., & Sandholzer, L. A. (1936). The use of semi-solid agar for the detection of bacterial motility. Journal of Bacteriology, 31, 575–580.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tominaga, T., An, S. Y., Oyaizu, H., & Yokota, A. (2009). Sporosarcina luteola sp. nov. isolated from soy sauce production equipment in Japan. The Journal of General and Applied Microbiology, 55, 217–223.

    Article  CAS  PubMed  Google Scholar 

  • Wolfgang, W. J., Coorevits, A., Cole, J. A., De Vos, P., Dickinson, M. C., Hannett, G. E., Jose, R., Nazarian, E. J., Schumann, P., Van Landschoot, A., et al. (2012). Sporosarcina newyorkensis sp. nov. from clinical specimens and raw cow’s milk. International Journal of Systematic and Evolutionary Microbiology, 62, 322–329.

    Article  PubMed  Google Scholar 

  • Yin, Y., Mao, X., Yang, J., Chen, X., Mao, F., & Xu, Y. (2012). dbCAN: A web resource for automated carbohydrate-active enzyme annotation. Nucleic Acids Research, 40, W445–W451.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoon, J. H., Lee, K. C., Weiss, N., Kho, Y. H., Kang, K. H., & Park, Y. H. (2001). Sporosarcina aquimarina sp. nov., a bacterium isolated from seawater in Korea, and transfer of Bacillus globisporus (Larkin and Stokes 1967), Bacillus psychrophilus (Nakamura 1984) and Bacillus pasteurii (Chester 1898) to the genus Sporosarcina as Sporosarcina globispora comb. nov., Sporosarcina psychrophila comb. nov. and Sporosarcina pasteurii comb. nov., and emended description of the genus Sporosarcina. International Journal of Systematic and Evolutionary Microbiology, 51, 1079–1086.

    Article  CAS  PubMed  Google Scholar 

  • Yoon, S. H., Ha, S. M., Kwon, S., Lim, J., Kim, Y., Seo, H., & Chun, J. (2017). Introducing EzBioCloud: A taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. International Journal of Systematic and Evolutionary Microbiology, 67, 1613–1617.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the Korea Research Institute of Bioscience & Biotechnology (KRIBB) Research Initiative Programs (KGM5232322) and the National Research Foundation of Korea (NRF) grant funded by the Korean Government Ministry of Science and ICT (MSIT) (No. RS-2023-00211215). We thank Professor Aharon Oren for advice regarding the nomenclature of the novel strain.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Na-Ri Shin.

Ethics declarations

Conflict of Interest

The authors declare that there are no conflicts of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 830 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, AI., Kim, B., Joe, SH. et al. Sporosarcina jeotgali sp. nov., Sporosarcina oncorhynchi sp. nov., and Sporosarcina trichiuri sp. nov., Isolated from Jeotgal, a Traditional Korean Fermented Seafood. J Microbiol. (2024). https://doi.org/10.1007/s12275-024-00106-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12275-024-00106-3

Keywords

Navigation