Skip to main content
Log in

Innate colour preferences of flower visitors

  • Review
  • Published:
Journal of Comparative Physiology A Aims and scope Submit manuscript

Abstract

Freshly emerged flower visitors exhibit colour preferences prior to individual experience with flowers. The understanding of innate colour preferences in flower visitors requires a detailed analysis, as, on the one hand, colour is a multiple-signal stimulus, and, on the other hand, flower visits include a sequence of behavioural reactions each of which can be driven by a preferential behaviour. Behavioural reactions, such as the distant approach, the close-range orientation, the landing, and the extension of mouthparts can be triggered by colour stimuli. The physiological limitations of spectral sensitivity, the neuro-sensory filters, and the animals' different abilities to make use of visual information such as brightness perception, wavelength-specific behaviour and colour vision shape colour preferences. Besides these receiverbased factors, there are restrictions of flower colouration due to sender-based factors such as the absorption properties of floral pigments and the dual function of flower colours triggering both innate and learned behaviour. Recordings of the spectral reflection of coloured objects, which trigger innate colour preferences, provide an objective measure of the colour stimuli. Weighting the spectral reflection of coloured objects by the spectral composition of the ambient light and the spectral sensitivity of the flower visitors' photoreceptors allows the calculation of the effective stimuli. Perceptual dimensions are known for only a few taxa of flower visitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ackerman JD (1986) Mechanisms and evolution of food-deceptive pollination systems in orchids. Lindleyana 1: 108–113

    Google Scholar 

  • Armbruster L (1922) Über das Farbensehen bei Wespen. Naturwiss Wochenschr NF XXI: 419–422

    Google Scholar 

  • Autrum H, von Zwehl V (1964) Die spektrale Empfindlichkeit einzelner Sehzellen des Bienenauges. Z Vergl Physiol 48: 357–384

    Google Scholar 

  • Backhaus W (1991) Color opponent coding in the visual system of the honeybee. Vision Res 31: 1381–1397

    Google Scholar 

  • Backhaus W (1993) Color vision and color choice behavior of the honey bee. Apidologie 24: 309–331

    Google Scholar 

  • Backhaus W, Menzel R (1987) Color distance derived from a receptor model of color vision in the honeybee. Biol Cybern 55: 321–331

    Google Scholar 

  • Beaman RS, Decker PJ, Beaman JH (1988) Pollination of Rqfflesia (Rafflesiaceae). Am J Bot 75: 1148–1162

    Google Scholar 

  • Bené F (1945) The role of learning in the feeding behavior of Black-Chinned Hummingbirds. Condor 47: 3–22

    Google Scholar 

  • Biedinger N, Barthlott W (1993) Untersuchungen zur Ultraviolettreflexion von Angiospermenblüten I. Monocotyledonae. Trop Subtrop Pflanzenwelt 86: 1–122

    Google Scholar 

  • Bishop LG (1974) An ultraviolet photoreceptor in a dipteran compound eye. J Comp Physiol 91: 267–275

    Google Scholar 

  • Bolwig N (1954) The role of scent as a nectar guide for honeybees on flowers and an observation on the effect of colour on recruits. Br J Anim Behav 2: 81–83

    Google Scholar 

  • Bowmaker JK, Dartnall HJA (1980) Visual pigments of rods and cones in a human retina. J Physiol (Lond) 298: 501–511

    Google Scholar 

  • Boyden TC (1982) The pollination biology of Calypso bulbosa var.americana (Orchidaceae): Initial deception of bumblebee visitors. Oecologia 55: 178–184

    Google Scholar 

  • Brown JH, Kodric-Brown A (1979) Convergence, competition, and mimicry in a temperate community of hummingbird-pollinated flowers. Ecology 60: 1022–1035

    Google Scholar 

  • Burkhardt D (1983) Wavelength perception and colour vision. In: Cosens DJ, Vince-Price D (eds) Society for Experimenta Biology Symposium XXXVI “The biology of photoreception”, pp 371–397

  • Burr B, Barthlott W (1993) Untersuchungen zur Ultraviolettreflexion von Angiospermenblüten II. Magnoliidae, Ranun-culidae, Hamamelididae, Caryophyllidae Rosidae. Trop Subtrop Pflazenwelt 87: 1–193

    Google Scholar 

  • Butler CG (1951) The importance of perfume in the discovery of food by the worker-honeybee (Apis mellifera L.). Proc R Soc Lond B 138: 403–413

    Google Scholar 

  • Cameron SA (1981) Chemical signals in bumble bee foraging. Behav Ecol Sociobiol 9: 257–260

    Google Scholar 

  • Chen DM, Goldsmith TH (1986) Four spectral classes of cone in the retina of birds. J Comp Physiol A 159: 473–479

    Google Scholar 

  • Chittka L, Lunau K (1992) Color coding and innate preferences for flower color patterns in bumblebees. In: Elsner N, Richter DW (eds) Proc 20th Göttingen Neurobiol Conference. G Thieme, Stuttgart, p 298

    Google Scholar 

  • Chittka L, Menzel R (1992) The evolutionary adaptation of flower colours and the insect pollinators' colour vision. J Comp Physiol A 171: 171–181

    Google Scholar 

  • Chittka L, Beier W, Hertel H, Steinmann E, Menzel R (1992) Opponent coding is a universal strategy to evaluate the photoreceptor inputs in Hymenoptera. J Comp Physiol A 170: 545–563

    Google Scholar 

  • Chittka L, Shmida A, Troje N, Menzel R (1994) Ultraviolet as a component of flower reflections, and the colour perception of Hymenoptera. Vision Res 34: 1489–1508

    Google Scholar 

  • Collias NE, Collias EC (1968) Anna's hummingbirds trained to select different colors in feeding. Condor 70: 273–274

    Google Scholar 

  • Dafni A (1984) Mimicry and deception in pollination. Anna Rev Ecol Syst 15: 259–278

    Google Scholar 

  • Daumer K (1956) Reizmetrische Untersuchungen des Farbensehens der Bienen. Z Vergl Physiol 38: 413–478

    Google Scholar 

  • Daumer K (1958) Blumenfarben, wie sie die Bienen sehen. Z Vergl Physiol 41: 49–110

    Google Scholar 

  • Delph LF, Lively CM (1989) The evolution of floral color change: pollinator attraction versus physiological constraints in Fuchsia excorticata. Evolution 43: 1252–1262

    Google Scholar 

  • Delpino F (1868–1875) Ulteriori Osservazioni sulla dicogamia nel regno vegetale: Milano, I + II

  • Dobat K, Peikert-Holle T (1985) Blüten und Fledermäuse. W Kramer, Frankfurt a M, 343 pp

    Google Scholar 

  • Dobson HEM (1987) Role of flower and pollen aromas in hostplant recognition by solitary bees. Oecologia 72: 618–623

    Google Scholar 

  • Dobson HEM, Bergström G, Groth I (1990) Differences in fragrance chemistry between flower parts of Rosa rugosa Thunb. (Rosaceae). Israel J Bot 39: 143–156

    Google Scholar 

  • Esch H, Bastian JA (1970) How do newly recruited honey bees approach a food site? Z Vergl Physiol 68: 175–181

    Google Scholar 

  • Faegri K, van der Pijl L (1979) The principles of pollination ecology: 3rd ed. Pergamon Press, Oxford

    Google Scholar 

  • Fukushi T (1989) Learning and discrimination of coloured papers in the walking blowfly, Lucilia cuprina. J Comp Physiol A 166: 57–64

    Google Scholar 

  • Fukushi T (1994) Colour perception of single and mixed monochromatic lights in the blowfly Lucilia cuprina. J Comp Physiol A 175: 15–22

    Google Scholar 

  • Gack C (1979) Zur Ausbildung, Evolution und Bedeutung von Staubgefäßimitationen bei Blüten als Signal für die Bestäuber. Doc thesis, Univ Freiburg, FRG, 198 pp

    Google Scholar 

  • Giurfa M (1991) Colour generalization and choice behaviour of the honeybee Apis mellifera ligustica. J Insect Physiol A 37: 41–44

    Google Scholar 

  • Giurfa M, Núñez J (1989) Colour signals and choice behaviour of the honeybee (Apis mellifera ligustica). J Comp Insect Physiol 35: 907–910

    Google Scholar 

  • Goldsmith TH (1980) Hummingbirds see near ultraviolet light. Science 207: 786–789

    Google Scholar 

  • Goldsmith TH (1990) Optimization, constraint, and history in the evolution of eyes. Q Rev Biol 65: 281–322

    Google Scholar 

  • Goldsmith TH, Goldsmith KM (1979) Discrimination of colors by the black-chinned Hummingbird, Archilochus alexandri. J Comp Physiol 130: 209–220

    Google Scholar 

  • Goulson D, Cory JS (1993) Flower constancy and learning in foraging preferences of the green-veined white butterfly Pieris napi. Ecol Entomol 18: 315–320

    Google Scholar 

  • Grant KA (1966) A hypothesis concerning the prevalence of red coloration in California hummingbird flowers. Am Nat 100: 85–97

    Google Scholar 

  • Guldberg LD, Atsatt PR (1975) Frequency of reflection and absorption of ultraviolet light in flowering plants. Am Midl Nat 93: 35–43

    Google Scholar 

  • Hardie RC (1979) Electrophysiological analysis of fly retina. I: Comparative properties of R 1–6 and R 7 and R 8. J Comp Physiol 129: 19–33

    Google Scholar 

  • Hardie RC (1985) Functional organization of the fly retina. In: Autrum H et al (eds) Progress in Sensory Physiology 5. Springer, Berlin, pp 1–79

    Google Scholar 

  • Haslett JR (1989) Interpreting patterns of resource utilisation: randomness and selectivity in pollen feeding by adult hoverflies. Oecologia 78: 433–442

    Google Scholar 

  • Hasselmann, EM (1962) Über die relative spektrale Empfindlichkeit von Käfer- und Schmetterlingsaugen bei verschiedenen Helligkeiten. Zool Jb Physiol 69: 537–576

    Google Scholar 

  • Heinrich B (1976) The foraging specializations of individual bumblebees. Ecol Monogr 46: 105–128

    Google Scholar 

  • Heinrich B (1979) “Majoring” and “Minoring” by foraging bumblebees Bombus vagans: an experimental analysis. Ecology 60: 245–255

    Google Scholar 

  • Heinrich B, Mudge PR, Deringis PG (1977) Laboratory analysis of flower constancy in foraging bumblebees: Bombus ternarius and B. terricola. Behav Ecol Sociobiol 2: 247–265

    Google Scholar 

  • Henderson ST (1970) Daylight and its spectrum. Adam Hilger Ltd., London

    Google Scholar 

  • Höglund G, Hamdorf K, Rosner G (1973) Trichromatic visual system in an insect and its sensitivity control by blue light. J Comp Physiol 86: 265–279

    CAS  PubMed  Google Scholar 

  • Horridge GA, Marceljia L, Jahnke R, Matic T (1983) Single electrode studies on the retina of the butterfly Papilio. J Comp Physiol 150: 271–294

    Google Scholar 

  • Huth HH, Burkhardt D (1972) Der spektrale Sehbereich eines Vi-olettohr-Kolibris. Naturwissenschaffen 59: 650

    Google Scholar 

  • Ilse D (1928) Über den Farbensinn der Tagfalter. Z Vergl Physiol 8: 658–692

    Google Scholar 

  • Ilse D (1949) Colour discrimination in the Dronefly, Eristalis tenax. Nature 163: 255–256

    Google Scholar 

  • Ilse D, Vaidya VG (1956) Spontaneous feeding response to colours in Papilio demoleus L.. Proc Indian Acad Sci, Sect B 43: 23–31

    Google Scholar 

  • Jacobs-Jessen UF (1959) Zur Orientierung der Hummeln und einiger anderer Hymenopteren. Z Physiol 41: 597–641

    Google Scholar 

  • Kay QON (1976) Preferential pollination of yellow-flowered morphs of Raphanus raphanistrum by Pieris and Eristalis. Nature 261: 230–232

    Google Scholar 

  • Kevan PG (1978) Floral coloration, its colorimetric analysis and significance in anthecology. In: Richards AJ (ed) The pollination of flowers by insects. Linn Soc Symp Ser 6. Academic Press, London, pp 51–78

    Google Scholar 

  • Kevan PG (1983) Floral colors through the insect eye: what they are and what they mean. In: Jones CE, Little RJ (eds) Handbook of experimental pollination biology. Van Nostrand Reinold, New York, pp 3–30

    Google Scholar 

  • Kevan PG, Lane MA (1985) Flower petal microtexture as a tactile cue for bees. Proc Natl Acad Sci USA 82: 4750–4752

    Google Scholar 

  • Kirschfeld K, Francheschini N (1977) Photostable pigments within the membrane of photoreceptors and their possible role. Biophys Struct Mechanism 3: 191–194

    Google Scholar 

  • Knoll F (1922) Der Tierversuch im Dienste der Blütenökologie. Ber Dtsch Bot Ges 40: 30–40

    Google Scholar 

  • Knoll F (1924) Blütenökologie und Sinnesphysiologie der Insekten. Naturwissenschaffen 12: 988–993

    Google Scholar 

  • Knoll F (1925) Lichtsinn und Blütenbesuch des Falters von Deilephila livicornica. Z Vergl Physiol 2: 329–380

    Google Scholar 

  • Knoll F (1926) Insekten und Blumen. Abh Zool-Bot Ges Wien 12: 1–645

    Google Scholar 

  • Knoll F (1927) Über Abendschwärmer und Schwärmerblumen. Ber Dtsch Bot Ges 45: 510–518

    Google Scholar 

  • Kovach JK (1986) Towards the genetics of an engram: the role of heridity in the visual preferences and perceptual imprinting. In: Fuller JL, Simmel EC (eds) Perspectives in behavior genetics. Lawrence Erlbaum Associates, Hilldale, London, pp 95–153

    Google Scholar 

  • Kugler H (1935) Blütenökologische Untersuchungen mit Hummeln VII. Die Anlockung von “Neulingen” durch Blüten. Planta 23: 692–714

    Google Scholar 

  • Kugler H (1936) Die Ausnutzung der Saftmalsumfärbung bei den Roßkastanienblüten durch Bienen und Hummeln. Ber Dtsch Bot Ges 54: 394–399

    Google Scholar 

  • Kugler H (1943) Hummeln als Blütenbesucher. Ergebn Biol 19: 143–323

    Google Scholar 

  • Kugler H (1950) Der Blütenbesuch der Schlammfliege (Eristalomyia tenax) Z Vergl Physiol 32: 328–347

    Google Scholar 

  • Kugler H (1955) Zum Problem der Dipterenblumen. Österr Bot Z 102: 529–541

    Google Scholar 

  • Kugler H (1956) Über die optische Wirkung von Fliegenblumen auf Fliegen. Ber Dtsch Bot Ges 69: 387–398

    Google Scholar 

  • Kugler H (1963) UV-Musterungen auf Blüten und ihr Zustandekommen. Planta 59: 296–329

    Google Scholar 

  • Kugler H (1966) UV-Male auf Blüten. Ber Dtsch Bot Ges 79: 57–70

    Google Scholar 

  • Kühn A (1929) Farbenunterscheidungsvermögen der Tiere, Rezeptionsorgane II. In: Bethe-Bergmann-Emden-Ellinger's Handbuch der normalen u. pathologischen Physiologie XII, 1, p 720ff

  • Kühn A, Ilse D (1925) Die Anlockung von Tagfaltern durch Pigmentfarben. Biol Zbl 45: 144–149

    Google Scholar 

  • Kullenberg B, Bergström G (1976) The pollination of Ophrys or-chids. Bot Notiser 129: 11–19

    Google Scholar 

  • Lamont B (1985) The significance of flower colour change in eight co-occurring shrub species. Bot J Linn Soc 90: 145–155

    Google Scholar 

  • Langer H, Hamann B, Meinecke CC (1979) Tetrachromatic visual system in the moth Spodoptera exempta (Insecta, Noctuidae). J Comp Physiol 129: 235–239

    Google Scholar 

  • Lehrer M, Srinivasan MV, Zhang SW, Horridge GA (1988) Motion cues provide the bee's visual world with a third dimension. Nature 332: 356–357

    Google Scholar 

  • Lindauer M (1952) Ein Beitrag zur Frage der Arbeitsteilung im Bienenstaat. Z Vergl Physiol 34: 299–345

    Google Scholar 

  • Little RJ (1983) A review of floral food deception mimicries with comments on floral mutualism. In: Jones CE, Little RJ (eds). Handbook of experimental pollination biology. S and E Scientific and Academic Editions, New York, pp 294–309

    Google Scholar 

  • Lubliner-Mianowska K (1955) The pigments of pollen grains. Acta Soc Bot Pol 24: 609–618

    Google Scholar 

  • Lunau K (1988) Innate and learned behaviour of flower-visiting hoverflies — flower-dummy experiments with Eristalis pertinax (SCOPOLI) (Diptera, Syrphidae). Zool Jb Physiol 92: 487–499

    Google Scholar 

  • Lunau K (1990) Colour saturation triggers innate reactions to flower signals: flower dummy experiments with bumblebees. J Comp Physiol A 166: 827–834

    Google Scholar 

  • Lunau K (1991) Innate flower recognition in bumblebees (Bombus terrestris, B. lucorum; Apidae): optical signals from stamens as landing reaction releasers. Ethology 88: 203–214

    Google Scholar 

  • Lunau K (1992a) A new interpretation of flower guide colouration: Absorption of ultraviolet light enhances colour saturation. P2 Syst Evol 183: 51–65

    Google Scholar 

  • Lunau K (1992b) Innate recognition of flowers by bumblebeesorientation of antennae to visual stamen signals. Can J Zool 70: 2139–2144

    Google Scholar 

  • Lunau K (1992c) Limits of colour learning in a flower-visiting hoverfly, Eristalis tenax L. (Syrphidae, Diptera). Eur J Neurosci, Suppl No 5: 103

    Google Scholar 

  • Lunau K (1992d) Evolutionary aspects of perfume collection in male euglossine bees (Hymenoptera) and of nest deception in beepollinated flowers. Chemoecology 3: 65–73

    Google Scholar 

  • Lunau K (1993a) Angeborene und erlernte Blütenerkennung bei Insekten. Ein entdecktes Geheimnis der Natur. Biologie in unserer Zeit 23: 48–54

    Google Scholar 

  • Lunau K (1993b) Interspecific diversity and uniformity of flower colour patterns as cues for learned discrimination and innate detection of flowers. Experientia 49: 1002–1010

    Google Scholar 

  • Lunau K, Wacht S (1994) Visual key stimuli of the innate proboscis extension in the hoverfly Eristalis tenax L. (Syrphidae, Diptera). J Comp Physiol A 174: 575–579

    Google Scholar 

  • Magin N, Classen R, Gack C (1989) The morphology of false anthers in Craterostigma plantagineum and Torenia polygonoides (Scophulariaceae). Can J Bot 67: 1931–1937

    Google Scholar 

  • McDade LA (1983) Long-Tailed Hermit Hummingbird visits to inflorescence color morphs of Heliconia irrasca. Condor 85: 360–364

    Google Scholar 

  • Menzel R (1967) Untersuchungen zum Erlernen von Spektralfarben durch die Hongibiene (Apis mellifica). Z vergl Physiol 56: 22–62

    Google Scholar 

  • Menzel R (1979) Spectral sensitivity and color vision in invertebrates. In: Autrum H (ed) Comparative physiology and evolution of vision in invertebrates (Handbook of sensory physiology VII/6A, Vision in invertebrates). Springer, Berlin, pp 503–580

    Google Scholar 

  • Menzel R (1985) Learning in honeybees in an ecological and behavioral context. Fortschr Zool 31: 55–74

    Google Scholar 

  • Menzel R (1987) Farbensehen blütenbesuchender Insekten. Internationales Büro der Kernforschungsanlage Jülich GmbH (ed), pp 1–15

  • Menzel R, Backhaus W (1991) Colour vision in insects. In: Gouras P (ed) Vision and visual dysfunction, Vol VII Perception of color. MacMilan Press, Houndsmills, pp 262–288

    Google Scholar 

  • Menzel R, Blakers M (1976) Colour receptors in the bee eye morphology and spectral sensitivity. J Comp Physiol 108: 11–33

    Google Scholar 

  • Menzel R, Shmida A (1993) The ecology of flower colours and the natural colour vision of insect pollinators: the Israeli flora as a study case. Biol Rev 68: 81–120

    Google Scholar 

  • Michener CD (1974) The social behavior of bees. A comparative study. Belknap Press of Harvard University Press, Cambridge

    Google Scholar 

  • Miller RS, Miller RE (1971) Feeding activity and color preference of Ruby-Throated Hummingbirds. Condor 73: 309–313

    Google Scholar 

  • Müller H (1881) Die Alpenblumen, ihre Befruchtung durch Insekten und ihre Anpassung an dieselben. Leipzig

  • Mulligan GA, Kevan PG (1973) Color, brightness, and other floral characteristics attracting insects to the blossoms of some Canadian weeds. Can J Bot 51: 1939–1952

    Google Scholar 

  • Neumeyer C (1980) Simultaneous color contrast in the honeybee. J Comp Physiol 139: 165–176

    Google Scholar 

  • Neumeyer C (1981) Chromatic adaptation in the honeybee: successive color contrast and color constancy. J Comp Physiol 144: 543–553

    Google Scholar 

  • Oettingen-Spielberg Th zu (1949) Über das Wesen der Suchbiene. Z Vergl Physiol 31: 454–489

    Google Scholar 

  • Osche G (1979) Zur Evolution optischer Signale bei Blütenpflanzen. Biologie in unserer Zeit 9: 161–170

    Google Scholar 

  • Osche G (1983a) Optische Signale in der Coevolution von Pflanze und Tier. Ber Dtsch Bot Ges 96: 1–27

    Google Scholar 

  • Osche G (1983b) Zur Evolution optischer Signale bei Pflanze, Tier und Mensch. Ernst-Haeckel-Vorlesung an der Friedrich-Schiller-Universität Jena: 4–35

  • Paulus HF (1978) Co-Evolution zwischen Blüten und ihren tierischen Bestäubern. Sonderb Naturwiss Ver Hamburg 2: 51–81

    Google Scholar 

  • Pedler C, Tilly R (1969) The retina of a fruit bat (Pteropus giganteus Brünnichj. Vision Res 9: 909–922

    Google Scholar 

  • Peitsch D, Fietz A, Hertel H, de Souza H, Ventura DF, Menzel R (1992) The spectral input system of hymenopteran insects and their receptor-based colour vision. J Comp Physiol A 170: 23–40

    CAS  PubMed  Google Scholar 

  • Porsch O (1931) Grellrot als Vogelblumenfarbe. Biologia Generalis 7: 647–674

    Google Scholar 

  • Proctor M, Yeo P (1973) The pollination of flowers. Collins St James's Place, London

    Google Scholar 

  • Raven PH (1972) Why are bird-visited flowers predominantly red? Evolution 26: 674

    Google Scholar 

  • Ribbands CR (1953) The inability of honeybees to communicate colours. Br J Anim Behav 1: 5–6

    Google Scholar 

  • Scherer C, Kolb G (1987) Behavioral experiments on the visual processing of color stimuli in Pieris brassicae L. (Lepidoptera). J Comp Physiol A 160: 645–656

    Google Scholar 

  • Schlecht P (1979) Colour discrimination in dim light: an analysis of the photoreceptor arrangement in the moth Deilephila. J Comp Physiol 129: 257–267

    Google Scholar 

  • Silberglied RE (1979) Communication in the ultraviolet. Annu Rev Ecol Syst 10: 373–398

    Google Scholar 

  • Sprengel ChK (1793) Das entdeckte Geheimnis der Natur im Bau und in der Befruchtung der Blumen. Viehweg, Berlin; Reprint 1972, Cramer, Lehre

    Google Scholar 

  • Stanton ML, Snow AA, Handel SN (1986) Floral evolution: attractiveness to pollinators increases male fiteness. Science 232: 1625–1627

    Google Scholar 

  • Steiner A, Paul R, Gemperlein R (1987) Retinal receptor types in Aglais urticae and Pieris brassicae (Lepidoptera) revealed by analysis of the electroretinogram obtained with Fourier interferometric stimulation (FIS). J Comp Physiol A 160: 247–258

    Google Scholar 

  • Stiles FG (1976) Taste preferences, color preferences, and flower choice in hummingbirds. Condor 78: 10–26

    Google Scholar 

  • Thien LB, Marcks BG (1972) The floral biology of Arethusa bulbosa, Calopogon tuberosus, and Pogonia ophioglossoides (Orchidaceae). Can J Bot 23: 19–25

    Google Scholar 

  • Thompson E, Palacois A, Varela FJ (1922) Ways of coloring. Behav Brain Sci 15: 1–25

    Google Scholar 

  • Troje N (1993) Spectral categories in the learning behaviour of blowflies. Z Naturforsch 48c: 96–104

    Google Scholar 

  • Tsukahara Y, Horridge GA (1977a) Visual pigment spectra from sensitivity measurements after chromatic adaptation of single dronefly retinula cells. J Comp Physiol 114: 233–251

    Google Scholar 

  • Tsukahara Y, Horridge GA (1977b) Interaction between two retinula cell types in the anterior eye of the dronefly Eristalis. J Comp Physiol 115: 287–298

    Google Scholar 

  • van der Pijl L (1936) Fledermäuse und Blumen. Flora 31: 1–40

    Google Scholar 

  • Vogel S (1950) Farbwechsel und Zeichnungsmuster bei Blüten. Österr Bot Z 97: 44–100

    Google Scholar 

  • Vogel S (1954) Blütenbiologische Typen als Elemente der Sippengliederung dargestellt anhand der Flora Südafrikas. In: Troll W, von Guttenberg H (eds) Botanische Studien. Fischer, Jena, pp 1–338

    Google Scholar 

  • Vogel S (1963) Das sexuelle Anlockungsprinzip der Catasetinen-und Stanhopeen-Blüten und die wahre Funktion ihres sogenannten Futtergewebes. Österr Bot Z 110: 308–337

    Google Scholar 

  • Vogel S (1975) Mutualismus und Parasitismus in der Nutzung von Pollenträgern. Verh Dtsch Zool Ges 68: 102–110

    Google Scholar 

  • Vogel S (1993) Betrug bei Pflanzen: Die Täuschblumen. Abh Akad Wiss Lit, math-nat KI (Mainz), Heft 1, Jg 1993: 1–48

    Google Scholar 

  • von Frisch K (1915) Der Farbensinn und Formensinn der Biene. Zool Jb Physiol Tiere 35: 1–82

    Google Scholar 

  • von Frisch K (1923) Über die Sprache der Bienen. Zool Jb Physiol Tiere 35: 1–186

    Google Scholar 

  • von Frisch K (1965) Tanzsprache und Orientierung der Bienen. Springer, Berlin Heidelberg New York

    Google Scholar 

  • von Helversen O (1972) Zur spektralen Unterschiedsempfindlichkeit der Honigbiene. J Comp Physiol 80: 439–472

    Google Scholar 

  • Waser, NM (1986) Flower constancy: definition, cause, and measurement. Am Nat 127: 593–603

    Google Scholar 

  • Weiss MR (1991) Floral colour changes as cues for pollinators. Nature 354: 227–229

    Google Scholar 

  • Werth E (1943) Versuche zum Farbensehen und zur Blumenauswahl der Wespen. Ber Naturf Ges Augsburg 5: 131–142

    Google Scholar 

  • Wickler W (1965) Mimicry and the evolution of animal communication. Nature 208: 519–521

    Google Scholar 

  • Wittmann D, Radtke R, Cure JR, Schifino-Wittmann MT (1990) Coevolved reproductive strategies in the oligolectic bee Callonychium petuniae (Apoidea, Andrenidae) and three purple flowered Petunia (Solanaceae) in southern Brazil. Z Zool Syst Evolut-forsch 28: 157–165

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lunau, K., Maier, E.J. Innate colour preferences of flower visitors. J Comp Physiol A 177, 1–19 (1995). https://doi.org/10.1007/BF00243394

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00243394

Key words

Navigation