Skip to main content
Log in

Different patterns of corticopontine projections from separate cortical fields within the inferior parietal lobule and dorsal prelunate gyrus of the macaque

  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Summary

Corticopontine projection patterns were studied after injections of an 3H-leucine and 3H-proline mixture into each of four distinct cortical fields within the inferior parietal lobule and dorsal prelunate gyrus. Different preferential patterns of pontine labeling were observed for each of the four cortical areas studied. Multiple injections across the dorsal aspect of the prelunate gyrus (area DP) yielded scattered patches of label limited to the dorsolateral pontine nuclear region. A single injection within the lateral intraparietal area (area LIP), located in the caudal portion of the lateral bank of the intraparietal sulcus resulted in a series of labeled patches across the dorsal tier of cells stretching across the dorsal portions of the dorsolateral, peduncular and dorsal pontine nuclei. Injection of the cortex on the caudal aspect of the inferior parietal convexity (area 7a) produced multiple patches of label along the lateral margin of the ventral, lateral, and dorsolateral nuclei. Injection of area 7b resulted in label along the lateral aspects of the ventral, lateral and dorsolateral nuclei, as seen with area 7a injections, as well as additional label in the ventromedial portions of the ventral, peduncular and paramedian pontine nuclei. These results provide supporting anatomic evidence for the functional subdivision of the inferior parietal lobule and dorsal aspect of the prelunate gyrus and provide new information about the organization of cortical projections to the primate pontine nuclei.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andersen RA, Mountcastle VB (1983) The influence of the angle of gaze upon the excitability of the light-sensitive neurons of the posterior parietal cortex. J Neurosci 3: 532–548

    Google Scholar 

  • Andersen RA, Siegel RM, Essick GK, Asanuma C (1985a) Subdivision of the inferior parietal lobule and dorsal prelunate gyrus of macaque by connectional and functional criteria. Invest Ophthalmol Vis Sci (Abstr) 26: 266

    Google Scholar 

  • Andersen RA, Asanuma C, Cowan M (1985b) Callosal and prefrontal associational projecting cell populations in area 7a of the macaque monkey: a study using retrogradely transported fluorescent dyes. J Comp Neurol 232: 443–455

    Google Scholar 

  • Asanuma C, Andersen RA, Cowan WM (1985) The thalamic relations of the caudal inferior parietal lobule and the lateral prefrontal cortex in monkeys: divergent cortical projections from cell clusters in the medial pulvinar nucleus. J Comp Neurol 241: 357–381

    Google Scholar 

  • Bailey P, Bonin G von, McCulloch WS (1950) The isocortex of the chimpanzee. University of Illinois Press, Urbana

    Google Scholar 

  • Baker J, Gibson A, Glickstein M, Stein J (1976) Visual cells in the pontine nuclei of the cat. J Physiol 255: 415–433

    Google Scholar 

  • Barbus H, Mesulam M-M (1981) Organization of afferent input to subdivisions of area 8 in the rhesus monkey. J Comp Neurol 206: 407–431

    Google Scholar 

  • Bard P, Woolsey CN, Snider RS (1947) Delimitation of central ervous mechanisms involved in motion sickness. Fed Proc 6: 72

    Google Scholar 

  • Belnap D, Noda H, Ohmo M (1983) Unit activity and responses to microstimulation in the macaque flocculus during smooth pursuit eye movements. Soc Neurosci Abstr 9: 609

    Google Scholar 

  • Bonin G von, Bailey P (1947) The neocortex of macaca mulatta. University of Illinois Press, Urbana IL

    Google Scholar 

  • Brodal P (1978) The corticopontine projection in the rhesus monkey: origin and principles of organization. Brain 101: 251–283

    Google Scholar 

  • Brodal P (1979) The pontocerebellar projection in the rhesus monkey: an experimental study with retrograde axonal transport of horseradish peroxidase. Neuroscience 4: 193–208

    Google Scholar 

  • Brodal P (1982a) Further observations on the cerebellar projections from the pontine nuclei and the nucleus reticularis tegmenti pontis in the rhesus monkey. J Comp Neurol 204: 44–55

    Google Scholar 

  • Brodal P (1982b) The cerebropontocerebellar pathway: salient features of its organization. In: Chan-Palay V, Palay SL (eds) The cerebellum — new vistas. Springer, Berlin, pp 108–132

    Google Scholar 

  • Brodmann K (1905) Beiträge zur histologischen Localisation der Großhirnrinde. J Psychol Neurol (Leipzig) 4: 177–226

    Google Scholar 

  • Buchbinder S, Dixon B, Glickstein M, Hwang Y, May J (1980) Visuomotor function in monkeys. Behav Brain Res 2: 248–249

    Google Scholar 

  • Burne RA, Mihailoff GA, Woodward DJ (1978) Visual corticopontine input to the paraflocculus: a combined autoradiographic and horseradish peroxidase study. Brain Res 143: 139–146

    Google Scholar 

  • Cohen J, Glickstein M, May J, Robinson F, Stein J (1981) Segregation and overlap of the visual input to the pontine nuclei of macaque. J Physiol 317: 76p

  • Cohen B, Matsuo U, Raphan T (1977) Quantitative analysis of the velocity characteristics of optokinetic nystagmus and optokinetic after-nystagmus, J Physiol 270: 321–344

    Google Scholar 

  • Collewijn H (1972) Latency and gain of the rabbit's optokinetic reactions to small movements. Brain Res 36: 59–70

    Google Scholar 

  • Cowan WM, Gottlieb DI, Hendrickson AE, Price JL, Woolsey TA (1972) The autoradiographic demonstration of axonal connections in the central nervous system. Brain Res 37: 21–51

    Google Scholar 

  • Dean P (1976) Effects of inferotemporal lesions on behavior of monkeys. Psychol Bull 83: 41–71

    Google Scholar 

  • Desimone R, Fleming J, Gross CG (1980) Prestriate afferents to inferior temporal cortex: an HRP study. Brain Res 184: 41–55

    Google Scholar 

  • Faugier-Grimaud S, Frenois C, Stein D (1978) Effects of posterior parietal lesions on visually guided behavior in monkeys. Neuropsychology 16: 151–168

    Google Scholar 

  • Fries W (1981) The projection from striate and prestriate visual cortex onto the pontine nuclei in the macaque monkey. Soc Neurosci Abstr 7: 762

    Google Scholar 

  • Galletti C, Maioli MG, Squatitro S, Battaglini PF (1982) Corticopontine projections from the visual area of the superior temporal sulcus in the macaque monkey. Arch Ital Biol 120: 411–416

    Google Scholar 

  • Glickstein M, May J (1982) Visual control of movement: the circuits which link visual to motor areas of the brain with special reference to the visual input to the pons and cerebellum. In: Neff WD (ed) Contributions to sensory physiology, Vol VII. Academic Press, New York, pp 103–145

    Google Scholar 

  • Glickstein M, Cohen J, Dixon B, Gibson A, LaBossiere E, Robinson F (1980) Corticopontine visual projections in macaque monkeys. J Comp Neurol 190: 209–230

    Google Scholar 

  • Glickstein M, May J, Mercer B (1985) Cortico-pontine projection in the macaque: the distribution of labelled cortical cells after large injections of horseradish peroxidase in the pontine nuclei. J Comp Neurol 235: 343–359

    Google Scholar 

  • Haaxma R, Kuypers GJM (1975) Intrahemispheric cortical connections and visual guidance of hand and finger movements in the rhesus monkey. Brain 98: 239–260

    Google Scholar 

  • Harting JK (1977) Descending pathways from the superior colliculus: an autoradiographic analysis in the rhesus monkey (Macaca Mulatta). J Comp Neurol 173: 583–612

    Google Scholar 

  • Hyvärinen J (1981) Regional distribution of functions in parietal association area 7 of the monkey. Brain Res 206: 287–303

    Google Scholar 

  • Hyvärinen J, Shelepin Y (1979) Distribution of visual and somatic functions in the parietal associative area 7 of the monkey. Brain Res 169: 561–564

    Article  CAS  PubMed  Google Scholar 

  • Kase M, Noda H, Suzuki DA, Miller DC (1979) Target velocity signals of visual tracking in vermal Purkinje cells of the monkey. Science 205: 717–720

    Google Scholar 

  • Kase M, Miller DC, Noda H (1980) Discharges of Purkinje ceUs and mossy fibers in the cerebellar vermis of the monkey during saccadic eye movements and fixation. J Physiol (Lond) 300: 539–555

    Google Scholar 

  • Keller EL, Crandall WF (1983) Neuronal responses to optokinetic stimuli in pontine nuclei of behaving monkey. J Neurophysiol 49: 169–187

    Google Scholar 

  • Künzle H, Akert K (1977) Efferent connections of cortical area 8 (frontal eye field) in Macaca fascicularis. A reinvestigationusing the autoradiographic technique. J Comp Neurol 173: 147–164

    Google Scholar 

  • Langer TP, Fuchs AF, Scudder C, Chubb MC (1985) Afferents to the flocculus of the cerebellum in the rhesus macaque as revealed by retrograde transport of horseradish peroxidase. J Comp Neurol 235: 1–25

    Google Scholar 

  • Leinonen L, Hyvärinen J, Nyman G, Linnankoski I (1979) I. Functional properties of neurons in lateral part of associative area 7 in awake monkeys. Exp Brain Res 34: 299–320

    CAS  PubMed  Google Scholar 

  • Lisberger S (1982) Role of the cerebellum during motor learning in the vestibulo-ocular reflex. Different mechanisms in different species? Trends Neurosci 5: 437–441

    Google Scholar 

  • Lisberger SG, Fuchs AF (1978) Role of primate flocculus during rapid behavioral modification of vestibuloocular reflex. I. Purkinje cell activity during visually guided horizontal smooth-pursuit eye movements and passive head rotation. J Neurophysiol 41: 733–763

    Google Scholar 

  • Lynch JC, Graybiel AM (1983) Comparison of afferents traced to the superior colliculus from the frontal eye fields and from two sub-regions of area 7 of the rhesus monkey. Soc Neurosci Abstr 9: 750

    Google Scholar 

  • Lynch JC, McLaren JW (1982) The contribution of parietooccipital association cortex to the control of slow eye movements. In: Lennerstrand G, Zee D, Keller E (eds) Functional basis of ocular motility disorders. Pergamon Press, New York, pp 501–510

    Google Scholar 

  • Lynch JC, McLaren JW (1983) Optokinetic nystagmus deficits following parieto-occipital cortex lesions in monkeys. Exp Brain Res 49: 125–130

    Google Scholar 

  • Lynch JC, Graybiel AM, Lobeck LJ (1985) The differential projection of two cytoarchitectonic subregions of the inferior parietal lobule of macaque upon the deep layers of the superior colliculus. J Comp Neurol 235: 241–254

    Google Scholar 

  • McElligott JG, Keller EL (1984) Cerebellar involvement in monkey saccadic eye movements: microstimulation. Exp Neurol 86: 543–558

    Google Scholar 

  • Maguire WM, Baizer JS (1984) Visuotopic organization of the relunate gyrus in rhesus monkey. J Neurosci 4: 1690–1704

    Google Scholar 

  • Maunsell JHR, Van Essen DC (1983) The connections of the iddle temporal visual area (MT) and their relationship to a cortical hierarchy in the macaque monkey. J Neurosci 3: 2563–2586

    CAS  PubMed  Google Scholar 

  • May JG, Andersen RA (1984) Different patterns of corticopontine projections from different cortical regions within the inferior parietal lobule and dorsal prelunate gyrus of the monkey. Soc Neurosci Abstr 10: 577

    Google Scholar 

  • Mishkin M (1972) Cortical visual areas and their interactions. In: Karczmar AG, Eccles JC (eds) Brain and human behavior. Springer, Berlin, pp 187–208

    Google Scholar 

  • Mustari MJ, Fuchs AJ, Wallman J (1984) Smooth-pursuit-related units in the dorsolateral pons of the rhesus macaque. Soc Neurosci Abstr 10: 987

    Google Scholar 

  • Newsome WT, Wurtz RH, Dursteler MR, Mikami A (1985) Deficits in visual motion processing following ibotenic acid lesions of the middle temporal visual area of the macaque monkey. J Neurosci 5: 825–840

    Google Scholar 

  • Noda H, Suzuki DA (1979a) The role of the flocculus of the monkey in saccadic eye movements. J Physiol (Lond) 294: 317–334

    Google Scholar 

  • Noda H, Suzuki DA (1979b) The role of the flocculus of the monkey in fixation and smooth pursuit eye movements. J Physiol (Lond) 294: 335–348

    Google Scholar 

  • Nyby O, Jansen J (1951) An experimental investigation of the cortico-pontine projection in Macaca Mulatta. Skrifter utgitl av det Norske Videnskaps. Akademi: Osla J'Mat Naturv, Klasse H3, pp 1–47

    Google Scholar 

  • Optican LM, Zee DS, Miles FA, Lisberger SG (1980) Oculomotor deficits in monkeys with flocculus lesions. Soc Neurosci Abstr 6: 474

    Google Scholar 

  • Ritchie L (1976) Effects of cerebellar lesions on saccadic eye movements. J Neurophysiol 39: 1246–1256

    Google Scholar 

  • Robinson DA (1976a) The physiology of pursuit eye movements. In: Monty RA and Sender JW (eds) Eye Movements and Psychological Processes. Lawrence Erlbaum Assoc, Publ, New Jersey, pp 19–32

    Google Scholar 

  • Robinson DA (1976b) Adaptive gain control of vestibulo-ocular reflex by the cerebellum. J Neurophysiol 39: 954–969

    Google Scholar 

  • Robinson F, Cohen J, May J, Sestokas T, Glickstein M (1984) Cerebellar targets of visual pontine cells in the cat. J Comp Neurol 223: 471–482

    Google Scholar 

  • Ron S, Robinson DA (1973) Eye movements evoked by cerebellar stimulation in the alert monkey. J Neurophysiol 36: 1004–1022

    Google Scholar 

  • Seltzer B, Pandya DN (1980) Converging visual and somatic sensory cortical input to the intraparietal sulcus of the rhesus monkey. Brain Res 192: 339–351

    Article  CAS  PubMed  Google Scholar 

  • Shibutani H, Sakata H, Hyvärinen J (1984) Saccade and blinking evoked by microstimulation of the posterior parietal association cortex of the monkey. Exp Brain Res 55: 1–8

    Google Scholar 

  • Siegal P, Wepsic JG (1974) Alteration of nociception by stimulation of cerebellar structures in the monkey. Physiol Behav 13: 189–194

    Google Scholar 

  • Sunderland S (1940) The projection of the cerebral cortex on the pons and cerebellum in the macaque monkey. J Anat 74: 201–226

    Google Scholar 

  • Suzuki DA, Keller EL (1982) Vestibular signals in the posterior vermis of the alert monkey cerebellum. Exp Brain Res 47: 145–147

    Google Scholar 

  • Suzuki DA, Keller EL (1983) Sensory-oculomotor interactions in primate cerebellar vermis: a role in smooth pursuit control. Soc Neurosci Abstr 9: 606

    Google Scholar 

  • Suzuki DA, Keller EL (1984) Visual signals in the dorsolateral pontine nucleus of the alert monkey: their relationship to smooth-pursuit eye movements. Exp Brain Res 53: 473–478

    Google Scholar 

  • Suzuki DA, Noda H, Kase M (1981) Visual and pursuit eye movement-related activity in posterior vermis of monkey cerebellum. J Neurophysiol 46: 1120–1139

    Google Scholar 

  • Suzuki DA, May J, Keller EL (1984) Smooth-pursuit eye movement deficits with pharmacological lesions in monkey dorsolateral pontine nucleus. Soc Neurosci Abstr 10: 58

    Google Scholar 

  • Takemori S, Cohen B (1974) Loss of visual suppression of vestibular nystagmus after flocculus lesions. Brain Res 72: 213–224

    Google Scholar 

  • Ungerleider LG, Mishkin M (1982) Two cortical visual systems. In: Mansfield RJW, Goodale MA (eds) The analysis of visual behavior. MIT Press, Cambridge MA, pp 549–586

    Google Scholar 

  • Ungerleider LG, Desimone R, Galkin T, Mishkin M (1984) Subcortical projections of area MT in the Macaque. J Comp Neurol 223: 368–386

    Google Scholar 

  • Van Essen DC, Maunsell JHR (1983) Hierarchical organization and functional streams in the visual cortex. Trends Neurosci 6: 370–375

    Google Scholar 

  • Waespe W, Henn U (1981) Visual-vestibular interaction in the flocculus of the alert monkey. II. Purkinje cell activity. Exp Brain Res 43: 349–360

    Google Scholar 

  • Waespe W, Cohen B, Raphan T (1983) Role of the flocculus and para-flocculus in optokinetic nystagmus and visual-vestibular interactions: effects of lesions. Exp Brain Res 50: 9–33

    Google Scholar 

  • Walker AE (1940) A cytoarchitectural study of the prefrontal area of the macaque monkey. J Comp Neurol 73: 59–86

    Google Scholar 

  • Wiesendanger R, Wiesendanger M, Ruegg (1979) An anatomical investigation of the corticopontine project in the primate (Macaca Fascicularis and Samiri Sciureus) II. The projection from frontal and parietal association areras. Neuroscience 4: 747–765

    Google Scholar 

  • Wilson M (1978) Visual system: pulvinar-extrastriate cortex. In: Masterton RB (ed) Handbook of behavioral neurobiology, Vol 1. Plenum Press, New York, pp 209–247

    Google Scholar 

  • Young LR (1971) Pursuit eye tracking movements. In: Bach-yRita P, Collins CC, Hyde JE (eds) The control of eye movements. Academic Press, New York, pp 429–444

    Google Scholar 

  • Zee DS, Yamazaki A, Butler, DH, Gucer G (1981) Effects of ablation of flocculus and paraflocculus on eye movements in primate. J Neurophysiol 46: 878–899

    Google Scholar 

  • Zeki SM (1977) Colour coding in the superior temporal sulcus of rhesus monkey visual cortex. Proc R Soc Lond B 197: 195–223

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

May, J.G., Andersen, R.A. Different patterns of corticopontine projections from separate cortical fields within the inferior parietal lobule and dorsal prelunate gyrus of the macaque. Exp Brain Res 63, 265–278 (1986). https://doi.org/10.1007/BF00236844

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00236844

Key words

Navigation