Skip to main content
Log in

Termination in overlapping sagittal zones in cerebellar anterior lobe of mossy and climbing fiber paths activated from dorsal funiculus

  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Summary

The termination patterns in the cerebellar anterior lobe of one mossy fiber path, the exteroceptive component of the cuneocerebellar tract (E-CCT), and one climbing fiber system, the dorsal spino-olivocerebellar paths (DF-SOCPs), which both relay in the main cuneate nucleus, were compared in the cat. The E-CCT terminates in the ipsilateral half of the anterior lobe in five sagittal zones which overlap five of the eight zones activated from the DFSOCPs. In at least one zone the E-CCT projection has a somatotopical organization which is similar to and overlaps that of the DF-SOCP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Brand, S., Dahl, A.-L., Mugnaini, E.: The length of parallel fibers in the cat cerebellar cortex. An experimental light and electron microscopic study. Exp. Brain Res. 26, 39–58 (1976)

    Google Scholar 

  • Brodal, A., Walberg, F.: The olivocerebellar projection in the cat studied with the method of retrograde axonal transport of horseradish peroxidase. IV. The projection to the anterior lobe. J. Comp. Neurol. 172, 85–108 (1977a)

    Google Scholar 

  • Brodal, A., Walberg, F.: The olivocerebellar projection in the cat studied with the method of retrograde axonal transport of horseradish peroxidase. VI. The projection onto longitudinal zones of the paramedian lobule. J. Comp. Neurol. 176, 281–294 (1977b)

    Google Scholar 

  • Chan-Palay, V., Palay, S.L., Brown, J.T., Van Itallie, C.: Sagittal organization of olivocerebellar and reticulocerebellar projections: Autoradiographic studies with 35S-methionine. Exp. Brain Res. 30, 561–576 (1977)

    Google Scholar 

  • Clendenin, M., Ekerot, C.-F., Oscarsson, O.: The lateral reticular nucleus in the cat. IV. Activation from dorsal funiculus and trigeminal afferents. Exp. Brain Res. 24, 131–144 (1975)

    Google Scholar 

  • Cooke, J.D., Larson, B., Oscarsson, O., Sjölund, B.: Origin and termination of cuneocerebellar tract. Exp. Brain Res. 13, 339–358 (1971a)

    Google Scholar 

  • Cooke, J.D., Larson, B., Oscarsson, O., Sjölund, B.: Organization of afferent connections to cuneocerebellar tract. Exp. Brain Res. 13, 359–377 (1971b)

    Google Scholar 

  • Dow, R.S.: Action potentials of cerebellar cortex in response to local electrical stimulation. J. Neurophysiol. 12, 245–256 (1949)

    Google Scholar 

  • Eccles, J.C.: An instruction-selection theory of learning in the cerebellar cortex. Brain Res. 127, 327–352 (1977)

    Google Scholar 

  • Eccles, J.C., Faber, D.S., Murphy, J.T., Sabah, N.H., Táboriková, H.: Afferent volleys in limb nerves influencing impulse discharges in cerebellar cortex. II. In Purkinje cells. Exp. Brain Res. 13, 36–53 (1971)

    Google Scholar 

  • Eccles, J.C., Ito, M., Szentágothai, J.: The cerebellum as a neuronal machine, pp. 156–177. Berlin, Heidelberg, New York: Springer 1967

    Google Scholar 

  • Eccles, J.C., Provini, L., Strata, P., Tábořiková, H.: Analysis of electrical potentials evoked in the cerebellar anterior lobe by stimulation of hindlimb and forelimb nerves. Exp. Brain Res. 6, 171–194 (1968)

    Google Scholar 

  • Eccles, J.C., Sabah, N.H., Schmidt, R.F., Táboriková, H.: Integration by Purkinje cells of mossy and climbing fiber inputs from cutaneous mechano-receptors. Exp. Brain Res. 15, 498–520 (1972)

    Google Scholar 

  • Ekerot, C.-F., Larson, B.: Differential termination of the exteroceptive and proprioceptive components of the cuneocerebellar tract. Brain Res. 36, 420–424 (1972)

    Google Scholar 

  • Ekerot, C.-F., Larson, B.: Correlation between sagittal projection zones of climbing and mossy fibre paths in cat cerebellar anterior lobe. Brain Res. 64, 446–450 (1973)

    Google Scholar 

  • Ekerot, C.-F., Larson, B.: Three sagittal zones in the cerebellar anterior lobe innervated by a common group of climbing fibres. Proc. Int. Union. Physiol. Sci. (Paris) XIII, 208 (1977)

    Google Scholar 

  • Ekerot, C.-F., Larson, B.: The dorsal spino-olivocerebellar system in the cat. I. Functional organization and termination in the anterior lobe. Exp. Brain Res. 36, 201–217 (1979a)

    Google Scholar 

  • Ekerot, C.-F., Larson, B.: The dorsal spino-olivocerebellar system in the cat. II. Somatotopical organization. Exp. Brain Res. 36, 219–232 (1979b)

    Google Scholar 

  • Ekerot, C.-F., Larson, B.: Climbing fiber branching in the cerebellar anterior lobe. (1979c) (in prep.)

  • Gordon, M., Rubia, F.J., Strata, P.: The effect of pentothal on the activity evoked in the cerebellar cortex. Exp. Brain Res. 17, 50–62 (1973)

    Google Scholar 

  • Groenewegen, H.J., Voogd, J.: The parasagittal zonation within the olivocerebellar projection. I. Climbing fiber distribution in the vermis of cat cerebellum. J. Comp. Neurol. 174, 417–488 (1977)

    Google Scholar 

  • Groenewegen, H.J., Voogd, J., Freedman, S.L.: The parasagittal zonation within the olivocerebellar projection. II. Climbing fiber distribution in the intermediate and hemispheric parts of cat cerebellum. J. Comp. Neurol. 183, 551–601 (1979)

    Google Scholar 

  • Hekmatpanah, J.: Organization of tactile dermatomes, C1 through L4, in cat. J. Neurophysiol. 24, 129–140 (1961)

    Google Scholar 

  • Holmqvist, B., Oscarsson, O., Rosen, L.: Functional organization of the cuneocerebellar tract in the cat. Acta Physiol. Scand. 58, 216–235 (1963)

    Google Scholar 

  • Ito, M.: Recent advances in cerebellar physiology and pathology. Advances in Neurology, Kark, R.A.P., Rosenberg, R.N., Schut, L.J. (eds.), Vol. 21, pp. 59–84. New York: Raven Press 1978

    Google Scholar 

  • Kitai, S.T., Tábořiková, H., Tsukahara, N., Eccles, J.C.: The distribution to the cerebellar anterior lobe of the climbing and mossy fiber inputs from the plantar and palmar cutaneous afferents. Exp. Brain Res. 7, 1–10 (1969)

    Google Scholar 

  • Künzle, H.: Autoradiographic tracing of the cerebellar projections from the lateral reticular nucleus in the cat. Exp. Brain Res. 22, 255–266 (1975)

    Google Scholar 

  • Körlin, D., Larson, B.: Differences in cerebellar potentials evoked by the group I and cutaneous components of the cuneocerebellar tract. In: Excitatory synaptic mechanisms, P. Andersen, J.K.S. Jansen (eds.), pp. 237–241. Oslo: Universitetsforlaget 1970

    Google Scholar 

  • Larsell, O.: The cerebellum of the cat and the monkey. J. Comp. Neurol. 99, 135–195 (1953)

    Google Scholar 

  • Oscarsson, O.: Termination and functional organization of the dorsal spino-olivocerebellar path. J. Physiol. (Lond.) 200, 129–149 (1969)

    Google Scholar 

  • Oscarsson, O.: Functional organization of spinocerebellar paths. In: Handbook of sensory physiology, Vol. II. Somatosensory system, A. Iggo (ed.), pp. 339–380. Berlin, Heidelberg, New York: Springer 1973

    Google Scholar 

  • Oscarsson, O.: Spatial distribution of mossy and climbing fibre inputs into the cerebellar cortex. In: Afferent and intrinsic organization of laminated structures in the brain, gnO. Creutzfeldt (ed.). Exp. Brain Res. [Suppl.] 1, 36–42 (1976)

  • Oscarsson, O., Sjölund, B.: The ventral spino-olivocerebellar system in the cat. I. Identification of five paths and their termination in the cerebellar anterior lobe. Exp. Brain Res. 28, 469–486 (1977)

    Google Scholar 

  • Palkovits, M., Magyar, P., Szentágothai, J.: Quantitative histological analysis of the cerebellar cortex in the cat. III. Structural organization of the molecular layer. Brain Res. 34, 1–18 (1971)

    Google Scholar 

  • Reighard, J., Jennings, H.S.: Anatomy of the cat, 3rd ed. New York: Holt 1935

    Google Scholar 

  • Sasaki, K., Strata, P.: Responses evoked in the cerebellar cortex by stimulating mossy fibre pathways to the cerebellum. Exp. Brain Res. 3, 95–110 (1967)

    Google Scholar 

  • Shambes, G.M., Gibson, J.M., Welker, W.: Fractured somatotopy in granule cell tactile areas of rat cerebellar hemispheres revealed by micromapping. Brain Behav. Evol. 15, 94–140 (1978)

    Google Scholar 

  • Strata, P.: The dual input to the cerebellar cortex. In: Golgi centennial symp. proc., M. Santini (ed.), pp. 273–280. New York: Raven Press 1975

    Google Scholar 

  • Vielvoye, G.J.: Spinocerebellar tracts in the White Leghorn (Gallus Domesticus). Thesis, University of Leiden, 1977

  • Voogd, J.: The importance of fiber connections in the comparative anatomy of mammalian cerebellum. In: Neurobiology of cerebellar evolution and development, R. Limás (ed.), pp. 493–514. Chicago: American Medical Association 1969

    Google Scholar 

  • Voogd, J., Broere, G., Van Rossum, J.: The medio-lateral distribution of the spinocerebellar projection in the anterior lobe and the simple lobule in the cat and a comparison with some other afferent fibre systems. Psychiat. Neurol. Neurochir. 72, 137–151 (1969)

    Google Scholar 

  • Watson, C.R.R., Broomhead, A., Holst, M.-C.: Spinocerebellar tracts in the brush-tailed possum, Trichosurus vulpecula. Brain Behav. Evol. 13, 142–153 (1976)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ekerot, C.F., Larson, B. Termination in overlapping sagittal zones in cerebellar anterior lobe of mossy and climbing fiber paths activated from dorsal funiculus. Exp Brain Res 38, 163–172 (1980). https://doi.org/10.1007/BF00236737

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00236737

Key words

Navigation