Skip to main content
Log in

Association of a 19- and a 21-kDa GTP-binding protein to pancreatic microsomal vesicles is regulated by the intravesicular pH established by a vacuolar-type H+-ATPase

  • Articles
  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

Evidence suggests that certain ras-related small molecular weight GTP-binding proteins (smg-proteins) are involved in intracellular membrane trafficking and vesicle fusion. We have previously shown that intravesicular acidification due to a vacuolar-type H+-ATPase, which is Cl dependent and highly sensitive to the specific inhibitor bafilomycin, enhances GTP-induced fusion of pancreatic microsomal vesicles (Hampe, W., Zimmermann, P., Schulz, I. 1990. FEBS Lett. 271:62–66). This process may involve function of smg-proteins. The present study shows that MgATP (2 mm), but neither MgATPγS nor ATP in the absence of Mg2+, increases association of 19- and 21-kDa smg-proteins to the vesicle membrane as monitored by their [α-32P]GTP binding. The affinity of smg-proteins for [α-32P]GTP was not altered by MgATP. Bafilomycin B1 (10−8 m), the protonophore CCCP (10−5 m), and replacement of Cl in the incubation buffer by CH3COO or NO 3 resulted in an almost complete inhibition of the MgATP-dependent association of the 19- and 21-kDa smg-proteins to the vesicle membranes. Furthermore, the MgATP effect on both smg-proteins was found to be due to the intravesicular pH and not to the H+ gradient over the vesicle membrane. We conclude that association of a 19-kDa (immunologically identified as the ADP-ribosylation factor, arf) and a yet unidentified 21-kDa GTP-binding protein to vesicle membranes is regulated by the intravesicular pH established by a vacuolar-type H+-ATPase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Balch, W.E. 1989. Biochemistry of interorganelle transport. J. Biol. Chem. 264:16965–16968

    Google Scholar 

  2. Balch, W.E. 1990. Small GTP-binding proteins in vesicular transport. Trends Biochem. Sci. 15:473–477

    Google Scholar 

  3. Barbacid, M. 1981. Ras genes. Annu. Rev. Biochem. 56:779–827

    Google Scholar 

  4. Birnbaumer, L., Abramowitz, J., Brown, A.M. 1990. Receptor-effector coupling by G proteins. Biochim. Biophys. Acta 1031:163–224

    Google Scholar 

  5. Bourne, H.R. 1988. Do GTPases direct membrane traffic in secretion? Cell 53:669–671

    Google Scholar 

  6. Bourne, H.R., Sanders, D.A., McCormick, F. 1990. The GTPase superfamily: A conserved switch for diverse cell functions. Nature 348:125–132

    Google Scholar 

  7. Bowman, E.J., Siebers, A., Altendorf, K. 1988. Bafilomycins: A class of inhibitors of membrane ATPases from microorganisms, animal cells, and plant cells. Proc. Natl. Acad. Sci. USA 85:7972–7976

    Google Scholar 

  8. Bradford, M.M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72:248–254

    Article  CAS  PubMed  Google Scholar 

  9. Chavrier, P., Parton, R.G., Hauri, H.P., Simons, K., Zerial, M. 1990. Localization of low molecular weight GTP binding proteins to exocytic and endocytic compartments. Cell 62:317–329

    Google Scholar 

  10. Darchen, F., Zahraoui, A., Hammel, F., Monteils, M.-P., Tavitian, A., Schermann, D. 1990. Association of the GTP-binding protein rab3A with bovine adrenal chromaffin granules. Proc. Natl. Acad. Sci. USA 87:5692–5696

    Google Scholar 

  11. Forgac, M. 1989. Structure and function of vacuolar class of ATP-driven proton pumps. Physiol. Rev. 69:765–796

    Google Scholar 

  12. Ghosh, T.K., Mullaney, J.M., Tarazi, F.I., Gill, D.L. 1989. GTP-activated communication between distinct inositol 1,4,5-trisphosphate-sensitive and -insensitive calcium pools. Nature 340:236–239

    Google Scholar 

  13. Goud, B., Salminen, A., Walworth, N.C., Novick, P.J. 1988. A GTP-binding protein required for secretion rapidly associates with secretory vesicles and the plasma membrane in yeast. Cell 53:753–768

    Google Scholar 

  14. Hall, A. 1990. The cellular functions of small GTP-binding proteins. Science 249:635–640

    Google Scholar 

  15. Hampe, W., Zimmermann, P., Schulz, I. 1990. GTP-induced fusion of isolated pancreatic microsomal vesicles is increased by acidification of the vesicle lumen. FEBS Lett. 271:62–66

    Google Scholar 

  16. Kamps, M.P., Buss, J.E., Sefton, B.M. 1985. Mutation of NH2-terminal glycine of p60src prevents both myristoylation and morphological transformation. Proc. Natl. Acad. Sci. USA 82:4625–4628

    Google Scholar 

  17. Laemmli, U.K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    PubMed  Google Scholar 

  18. Lapetina, E.G., Lacal, J.C., Reep, B.R., Vedia, L.M. 1989. A ras-related protein is phosphorylated and translocated by agonists that increase cAMP levels in human platelets. Proc. Natl. Acad. Sci. USA 86:3131–3134

    Google Scholar 

  19. Lapetina, E.G., Reep, B.R. 1987. Specific binding of [α-32P]GTP to cytosolic and membrane-bound proteins of human platelets correlates with the activation of phospholipase C. Proc. Natl. Acad. Sci. USA 84:2261–2265

    Google Scholar 

  20. Mellman, I., Fuchs, R., Helenius, A. 1986. Acidification of the endocytic and exocytic pathways. Annu. Rev. Biochem. 55:663–700

    Google Scholar 

  21. Mizoguchi, A., Kim, S., Ueda, T., Kikuchi, A., Yorifuji, H., Hirokawa, N., Takai, Y. 1990. Localization and subcellular distribution of smg p25A, a ras p21-like GTP-binding protein, in rat brain. J. Biol. Chem. 265:11872–11879

    Google Scholar 

  22. Rudnick, G. 1986. ATP-driven H+ pumping into intracellular organelles. Annu. Rev. Physiol. 48:403–413

    Google Scholar 

  23. Schmitt, H.D., Puzicha, M., Gallwitz, D. 1988. Study of a temperature-sensitive mutant of the ras-related ypt1 gene product in yeast suggests a role in the regulation of intracellular calcium. Cell 53:635–647

    Google Scholar 

  24. Schnefel, S., Pröfrock, A., Hinsch, K.-D., Schulz, I. 1990. Cholecystokinin activates G i 1−, G i 2−, G i 3− and several G s -proteins in rat pancreatic acinar cells. Biochem. J. 269:483–488

    Google Scholar 

  25. Segev, N., Mulholland, J., Botstein, D. 1988. The yeast GTP-binding ypt1 protein and a mammalian counterpart are associated with the secretion machinery. Cell 52:915–924

    Google Scholar 

  26. Serafini, T., Brunner, M., Kahn, R.A., Rothman, J.E. 1990. ADP-ribosylation factor (arf) is a constituent of the nonclathrin-coated Golgi transport vesicles. J. Cell. Biochem. 14C:64 (Abstr.)

    Google Scholar 

  27. Sewell, J.L., Kahn, R.A. 1988. Sequences of the bovine and yeast ADP-ribosylation factor and comparison to other GTP-binding proteins. Proc. Natl. Acad. Sci. USA 85:4620–4624

    Google Scholar 

  28. Stearns, T., Willingham, M.C., Botstein, D., Kahn, R.A. 1990. ADP-ribosylation factor is functionally and physically associated with the Golgi complex. Proc. Natl. Acad. Sci. USA 87:1238–1242

    Google Scholar 

  29. Streb, H., Bayerdörffer, E., Haase, W., Irvine, R.F., Schulz, I. 1984. Effect of inositol-1,4,5-trisphosphate on isolated subcellular fractions of rat pancreas. J. Membrane Biol. 81:241–253

    Google Scholar 

  30. Thévenod, F., Kemmer, T.P., Christian, A.L., Schulz, I. 1989. Characterization of MgATP-driven H+ uptake into a microsomal vesicle fraction from rat pancreatic acinar cells. J. Membrane Biol. 107:263–275

    Google Scholar 

  31. Towbin, H., Staehelin, T., Gordon, J. 1979. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: Procedure and some applications. Proc. Natl. Acad. Sci. USA 76:4350–4354

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

The arf-antibodies were kindly supplied by Dr. R.A. Kahn. We thank Prof. Dr. D. Gallwitz, Dr. R. Jahn, and Dr. E.G. Lapetina for kindly providing the ypt 1-, rab 3-, and rap 1-antibodies, respectively. ADP-ribosyltransferase C3 from Clostridium botulinum was kindly supplied by Prof. Dr. K. Aktories. This work was supported by the Jung-Stiftung für Wissenschaft und Forschung. S.Z. was supported by a grant of the Deutsche Forschungsgemeinschaft (Ze 237/3-1).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zeuzem, S., Zimmermann, P. & Schulz, I. Association of a 19- and a 21-kDa GTP-binding protein to pancreatic microsomal vesicles is regulated by the intravesicular pH established by a vacuolar-type H+-ATPase. J. Membarin Biol. 125, 231–241 (1992). https://doi.org/10.1007/BF00236436

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00236436

Key words

Navigation