Skip to main content
Log in

The distribution and topographical organization in the thalamus of anterogradely-transported horseradish peroxidase after spinal injections in cat and raccoon

  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Summary

The distribution of anterogradely-transported horseradish peroxidase (HRP) was examined in the rostral mesencephalon and thalamus of cats and raccoons that had received injections of HRP in the cervical and/or lumbosacral enlargements of the spinal cord. Labeling was consistently observed in a large number of loci. All regions previously identified as targets of spinomesencephalic or spinothalamic fibers were included. Evidence of topographical organization was obtained in several regions. Adjacent fields of labeling were often separable on the basis of the distribution, appearance and topographical organization of the labeling. Subject to the methodological constraints imposed by the possibilities of transneuronal and/or collateral labeling, we conclude that a wide variety of loci in the thalamus receive direct spinal input. The organization of these projections suggests that each terminal region may be associated with different aspects of spinal cord function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

A:

anterior pretectal nucleus

AD:

anterodorsal n.

AM:

anteromedial n.

AV:

anteroventral n.

CeM:

centromedial n.

CD:

centrodorsal n. (raccoon)

CL:

centrolateral n.

CM:

centre median

H:

habenula

L n.a:

limitans

LD:

laterodorsal n.

LG:

lateral geniculate

LGv:

lateral geniculate, ventral subnucleus

LP:

lateral posterior n.

LPvi:

lateral posterior n., ventral intermediate part

M:

medial pretectal n.

mc:

medial geniculate, magnocellular subnucleus

MD:

mediodorsal n.

MG:

medial geniculate

ML:

medial lemniscus

N:

pretectal nucleus of the optic tract

nBIC:

n. of the brachium of the inferior colliculus

O:

olivary pretectal n.

OT:

optic tract

P:

posterior nucleus of Rioch

Pc:

paracentral n.

Pf:

parafascicular n.

PO:

posterior group of thalamus

PP:

posterior pretectal n.

Pt:

parataenial n.

Pul:

pulvinar

Pv:

paraventricular n. of thalamus

R:

reticular n.

Re:

n. reuniens

Rh:

rhomboid n.

RN:

red nucleus

SG:

suprageniculate n.

Sm:

n. submedius

SN:

substantia nigra

Spf:

subparafascicular n.

Tg:

mesencephalic tegmentum

VA:

ventroanterior n.

VP:

ventroposterior thalamus (i.e. VPM, VPI, and VPL)

VL:

ventrolateral n.

VM:

ventromedial n.

VMb:

ventromedial n., basal part

VPI:

ventroposteroinferior n.

VPL1a:

ventroposterolateral n., lateral part

VPLm:

ventroposterolateral n., medial part

VPM:

ventroposteromedial n.

ZI:

zona incerta

References

  • Akert K, Hartmann-von Monakow K, Künzle H (1979) Projection of precentral motor cortex upon nucleus medialis thalami in the monkey. Neurosci Lett 11: 103–106.

    Google Scholar 

  • Anderson FD, Berry CM (1959) Degeneration studies of long ascending fiber systems in the cat brain stem. J Comp Neurol 111: 195–229.

    Google Scholar 

  • Andersson SA, Landgren S, Wolsk D (1966) The thalamic relay and cortical projection of group I muscle afferents from the forelimb of the cat. J Physiol (Lond) 183: 576–591.

    Google Scholar 

  • Applebaum AE, Leonard RB, Kenshalo DR Jr, Martin RF, Willis WD (1979) Nuclei in which functionally identified spinothalamic tract neurons terminate. J Comp Neurol 188: 575–586.

    Google Scholar 

  • Asanuma C, Thach WT, Jones EG (1983) Distribution of cerebellar terminations and their relation to other afferent terminations in the ventral lateral thalamic region of the monkey. Brain Res Rev 5: 237–265.

    Google Scholar 

  • Avanzini G, Spreafico R, Broggi G, Giovannini P, Franceschetti S (1977) Topographic distribution of visual and somesthetic unitary responses in the PUL-LP complex of the cat. Neurosci Lett 4: 135–143.

    Google Scholar 

  • Berkley KJ (1973) Response properties of cells in the ventrobasal and posterior group nuclei of the cat. J Neurophysiol 36: 940–952.

    Google Scholar 

  • Berkley KJ (1980) Spatial relationships between the terminations of somatic sensory and motor pathways in the rostral brainstem of cats and monkeys. I. Ascending somatic sensory inputs to lateral diencephalon. J Comp Neurol 193: 283–317.

    Google Scholar 

  • Bharos TB, Kuypers HGJM, Lemon RN, Muir RB (1981) Divergent collaterals from deep cerebellar neurons to thalamus and tectum, and to medualla oblongata and spinal cord: retrograde fluorescent and electrophysiological studies. Exp Brain Res 42: 399–410.

    Google Scholar 

  • Boivie J (1971) The termination of the spinothalamic tract in cat: an experimental study with silver impregnation methods. Exp Brain Res 12: 331–353.

    Google Scholar 

  • Boivie J (1979) An anatomical reinvestigation of the termination of the spinothalamic tract in the monkey. J Comp Neurol 186: 343–370.

    Google Scholar 

  • Boivie JJG, Perl ER (1975) Neural substrates of somatic sensation. In: Guyton AC, Hunt CC (eds) Physiology Series One, Vol III, Neurophysiology. University Park Press, Baltimore.

    Google Scholar 

  • Brown AG (1981) Organization in the spinal cord. Springer, Berlin Heidelberg New York, pp 238.

    Google Scholar 

  • Burton H, Craig AD (1983) Spinothalamic projections in cat, raccoon and monkey: a study based on anterograde transport of horseradish peroxidase. In: Macchi G, Rustioni A, Spreafico R (eds) Somatosensory integration in the thalamus. Elsevier, Amsterdam, pp 17–41.

    Google Scholar 

  • Burton H, Jones EG (1976) The posterior thalamic region and its cortical projection in new world and old world monkeys. J Comp Neurol 168: 249–302.

    Google Scholar 

  • Burton H, Loewy AD (1977) Projections to the spinal cord from medullary somatosensory relay nuclei. J Comp Neurol 173: 773–792.

    Google Scholar 

  • Burton H, Mitchell G, Brent D (1982) Second somatic sensory area in the cerebral cortex of cats: somatotopic organization and cytoarchitecture. J Comp Neurol 210: 109–135.

    Google Scholar 

  • Carstens E, Trevino DL (1978) Laminar origins of spinothalamic projections in the cat as determined by the retrograde transport of horseradish peroxidase. J Comp Neurol 182: 151–166.

    Google Scholar 

  • Casey KL, Keene JJ, Morrow T (1974) Bulboreticular and medial thalamic unit activity in relation to aversive behavior and pain. In: Bonica JJ (ed) Advances in neurology. Raven, New York, pp 197–205.

    Google Scholar 

  • Clemo HR, Stein BE (1982) Somatosensory cortex: a “new” representation. Brain Res 235: 162–168.

    Google Scholar 

  • Condé F, Condé H (1980) Demonstration of a rubrothalamic projection in the cat, with some comments on the origin of the rubrospinal tract. Neuroscience 5: 789–802.

    Google Scholar 

  • Cowan WM, Gottlieb DI, Hendrickson AE, Price JL, Woolsey TA (1972) The autoradiographic demonstration of axonal connections in the central nervous system. Brain Res 37: 21–51.

    Google Scholar 

  • Craig AD, Burton H (1979) Spinothalamic terminations in the ventroposterolateral nucleus of the cat. Soc Neurosci Abst 5: 705.

    Google Scholar 

  • Craig AD, Burton H (1981) Spinal and medullary lamina I projection to nucleus submedius in medial thalamus: a possible pain center. J Neurophysiol 45: 443–466.

    Google Scholar 

  • Craig AD, Dunst R, Kniffki K-D (1984) Topographic distribution of somatosensory neurones dorsal to the cat's ventroposterior nuclei. Pflügers Arch 400: R16.

    Google Scholar 

  • Craig AD, Kniffki K-D (1982) Lumbosacral lamina I cells projecting to medial and/or lateral thalamus in the cat. Soc Neurosci Abst 8: 95.

    Google Scholar 

  • Craig AD, Wiegand SJ, Price JL (1982) The thalamo-cortical projection of the nucleus submedius in the cat. J Comp Neurol 206: 28–48.

    Google Scholar 

  • Curry MJ (1972) The exteroceptive properties of neurones in the somatic part of the posterior group (PO). Brain Res 44: 439–462.

    Google Scholar 

  • Darian-Smith I, Isbister J, Mok H, Yokota T (1966) Somatic sensory cortical projection areas excited by tactile stimulation of the cat: a triple representation. J Physiol (Lond) 182: 671–689.

    Google Scholar 

  • De Olmos J, Heimer L (1977) Mapping of collateral projections with the HRP-method. Neurosci Lett 6: 107–114.

    Google Scholar 

  • Dong WK, Ryu H, Wagman IH (1978) Nociceptive responses of neurons in medial thalamus and their relationship to spinothalamic pathways. J Neurophysiol 41: 1592–1613.

    Google Scholar 

  • Dykes RW (1982) Parallel processing of cutaneous information in the somatosensory system of the cat. J Can Sci Neurol 9: 9–19.

    Google Scholar 

  • Getz B (1952) The termination of spinothalamic fibers in the cat as studied by the method of terminal degeneration. Acta Anat 16: 271–290.

    Google Scholar 

  • Giesler GJ Jr, Menetrey D, Basbaum AI (1979) Differential origins of spinothalamic tract projections to medial and lateral thalamus in the rat. J Comp Neurol 184: 107–126.

    Google Scholar 

  • Giesler GJ Jr, Yezierski RP, Gerhart KD, Willis WD (1981) Spinothalamic tract neurons that project to medial and/or lateral thalamic nuclei: evidence for a physiologically novel population of spinal cord neurons. J Neurophysiol 46: 1285–1308.

    Google Scholar 

  • Golovchinsky V, Kruger L, Saporta SA, Stein BE, Young DW (1981) Properties of velocity-mechanosensitive neurons of the cat ventrobasal thalamic nucleus with special reference to the concept of convergence. Brain Res 209: 355–374.

    Google Scholar 

  • Graham J (1977) An autoradiographic study of the efferent connections of the superior colliculus in the cat. J Comp Neurol 17: 629–654.

    Google Scholar 

  • Grant G, Boivie J, Silfvenius H (1973) Course and termination of fibers from the nucleus z of the medulla oblongata. An experimental light microscopical study in the cat. Brain Res 55: 55–70.

    Google Scholar 

  • Graybiel AM, Berson DM (1980) Histochemical identification and afferent connections of subdivisions in the lateralis posterior-pulvinar complex and related thalamic nuclei in the cat. Neuroscience 5: 1175–1238.

    Google Scholar 

  • Guilbaud G, Caille D, Besson JM, Benelli G (1977) Single unit activities in ventral posterior and posterior group thalamic nuclei during nociceptive and non-nociceptive stimulation in the cat. Arch Ital Biol 115: 38–56.

    Google Scholar 

  • Halliday AM, Logue V (1972) Painful sensations evoked by electrical stimulation in the thalamus. In: Somjen GG (ed) Neurophysiology studied in man. Excerpta Medica, Amsterdam, pp 221–230.

    Google Scholar 

  • Hassler R (1960) Die zentralen Systeme des Schmerzes. Acta Neurochir 8: 353–423.

    Google Scholar 

  • Heath CJ, Jones EG (1971) An experimental study of ascending connections from the posterior group of thalamic nuclei in the cat. J Comp Neural 141: 397–426.

    Google Scholar 

  • Hendry SHC, Jones EG, Graham J (1979) Thalamic relay nuclei for cerebellar and certain related fiber systems in the cat. J Comp Neurol 185: 679–714.

    Google Scholar 

  • Herron P (1983) The connections of cortical somatosensory areas I and II with separate nuclei in the ventroposterior thalamus in the raccoon. Neuroscience 8: 243–257.

    Google Scholar 

  • Honda CN, Mense S, Perl ER (1983) Neurons in ventrobasal region of cat thalamus selectively responsive to noxious mechanical stimulation. J Neurophysiol 49: 662–673.

    Google Scholar 

  • Hongo T, Kudo N, Yamashita M, Ishizuka N, Mannen H (1981) Transneuronal passage of intraaxonally injected horseradish peroxidase (HRP) from group Ib and II fibers into the secondary neurons in the dorsal horn of the cat spinal cord. Biomed Res 2: 722–727.

    Google Scholar 

  • Hyvärinen J (1982) Posterior parietal lobe of the primate brain. Physiol Rev 62: 1060–1129.

    Google Scholar 

  • Itoh K (1977) Efferent projections of the pretectum in the cat. Exp Brain Res 30: 89–105.

    Google Scholar 

  • Itoh K, Mizuno N (1977) Topographical arrangement of thalamocortical neurons in the centrolateral nucleus (CL) of the cat with special reference to the spino-thalamo-motor cortical path through the CL. Exp Brain Res 30: 471–480.

    Google Scholar 

  • Jones EG (1981) Functional subdivision and synaptic organization of the mammalian thalamus. In: Porter R (ed) Neurophysiology IV, International review of physiology. University Park Press, Baltimore (vol 25, pp 173–245).

    Google Scholar 

  • Jones EG, Burton H (1974) Cytoarchitecture and somatic sensory connectivity of thalamic nuclei other than the ventrobasal complex in the cat. J Comp Neurol 154: 395–432.

    Google Scholar 

  • Jones EG, Leavitt RY (1974) Retrograde axonal transport and the demonstration of non-specific projections to the cerebral cortex and striatum from thalamic intralaminar nuclei in the rat, cat, and monkey. J Comp Neurol 154: 349–378.

    Google Scholar 

  • Jones EG, Powell TPS (1971) An analysis of the posterior group of thalamic nuclei on the basis of its afferent connections. J Comp Neurol 143: 185–216.

    Google Scholar 

  • Kaas JH (1983) What, if anything, is SI? Organization of first somatosensory area of cortex. Physiolog Rev 63: 206–231.

    Google Scholar 

  • Kenshalo DR Jr, Giesler GJ Jr, Leonard RB, Willis WD (1980) Response of neurons in primate ventral posterior lateral nucleus to noxious stimuli. J Neurophysiol 43: 1594–1614.

    Google Scholar 

  • Kniffki K-D, Mizumura K (1983) Responses of neurons in VPL and VPL-VL region of the cat to algesic stimulation of muscle and tendon. J Neurophysiol 49: 649–661.

    Google Scholar 

  • Kotchabhakdi N, Rinvik E, Walberg F, Yingchareon K (1980a) The vestibulothalamic projection in the cat studied by retrograde axonal transport of horseradish peroxidase. Exp Brain Res 40: 405–418.

    Google Scholar 

  • Kotchabhakdi N, Rinvik E, Yingchareon K, Walberg F (1980b) Afferent projections to the thalamus from the perihypoglossal nuclei. Brain Res 187: 457–461.

    Google Scholar 

  • Kuypers HGJM, Maisky VA (1975) Retrograde axonal transport of HRP from spinal cord to brain stem cell groups in the cat. Neurosci Lett 1: 9–14.

    Google Scholar 

  • Landgren S, Nordwall A, Wangström C (1965) The location of thethalamic relay in the spino-cervico-lemniscal path. Acta Physiol Scand 65: 164–175.

    Google Scholar 

  • Larsen KD, Asanuma H (1979) Thalamic projections to the feline motor cortex studied with horseradish peroxidase. Brain Res 172: 209–215.

    Google Scholar 

  • Luiten PGM, Kuipers F, Schuitmaker H (1982) Organization of diencephalic and brainstem afferent projections to the lateral septum in the rat. Neurosci Lett 30: 211–216.

    Google Scholar 

  • Mantyh PW, Peschanski M (1983) The use of wheat germ agglutinin-horseradish peroxidase conjugates for studies of anterograde axonal transport. J Neurosci Meth 7: 117–128.

    Google Scholar 

  • Mehler WR (1969) Some neurological species differences — A posterior. Ann NY Acad Sci 167: 424–468.

    Google Scholar 

  • Mesulam M-M (ed) (1982) Tracing neural connections with horseradish peroxidase. Wiley, New York, pp 251.

    Google Scholar 

  • Meyers DER, Snow PJ (1982) The responses to somatic stimuli of deep spinothalamic tract cells in the lumbar spinal cord of the cat. J Physiol (Lond) 329: 355–371.

    Google Scholar 

  • Nakahama H, Shima K, Aya K, Kisara K, Sakurada S (1981) Antinociceptive action of morphine and pentazocine on unit activity in the nucleus centralis lateralis, nucleus ventralis lateralis and nearby structures of the cat. Pain 10: 47–56.

    Google Scholar 

  • Nauta WJH, Kuypers HGJM (1958) Some ascending pathways in the brain stem reticular formation. In: Jasper HH et al. (eds) Reticular formation of the brain. Little, Brown & Co., Boston, pp 3–30.

    Google Scholar 

  • Nyquist JK (1975) Somatosensory properties of neurons of thalamic nucleus ventralis lateralis. Exp Neurol 48: 123–135.

    Google Scholar 

  • Nyquist JK, Greenhoot JH (1974) Unit analysis of nonspecific thalamic responses to high-intensity cutaneous input in the cat. Exp Neurol 42: 609–622.

    Google Scholar 

  • Ottersen OP, Ben-Ari Y (1979) Afferent connections to the amygdaloid complex of the rat and cat. I. Projections from the thalamus. J Comp Neurol 187: 401–424.

    Google Scholar 

  • Pappas CL, Strick PL (1981) Physiological demonstration of multiple representation in the forelimb region of the cat motor cortex. J Comp Neurol 200: 481–490.

    Google Scholar 

  • Pearson JC, Haines DE (1980) Somatosensory thalamus of a prosimian primate (Galago senegalensis). I. Configuration of nuclei and termination of spinothalamic fibers. J Comp Neurol 190: 533–558.

    Google Scholar 

  • Peschanski M, Mantyh PW (1983) Efferent connections of the subfascicular area of the mesodiencephalic junction and its possible involvement in stimulation-produced analgesia. Brain Res 263: 181–190.

    Google Scholar 

  • Raymond J, Sans A, Marty R (1974) Projections thalamiques des noyaux vestibulaires: etude histologique chez le chat. Exp Brain Res 20: 273–283.

    Google Scholar 

  • Rioch DM (1929) Studies on the diencephalon of Carnivora. Part I. The nuclear configuration of the thalamus, epithalamus, and hypothalamus of the dog and cat. J Comp Neurol 49: 1–119.

    Google Scholar 

  • Rockel AJ, Heath CJ, Jones EG (1972) Afferent connections to the diencephalon in the marsupial phalanger and the question of sensory convergence in the “posterior group” of the thalamus. J Comp Neurol 145: 105–130.

    Google Scholar 

  • Sakai ST (1982) The thalamic connectivity of the primary motor cortex (MI) in the raccoon. J Comp Neurol 204: 238–252.

    Google Scholar 

  • Saper CB, Swanson LW, Cowan WM (1979) Some efferent connections of the rostral hypothalamus in the squirrel monkey (Saimiri sciureus) and cat. J Comp Neurol 184: 205–242.

    Google Scholar 

  • Sato M, Itoh K, Mizuno N (1979) Distribution of thalamocaudate neurons in the cat as demonstrated by horseradish peroxidase. Exp Brain Res 34: 143–153.

    Google Scholar 

  • Schlag-Rey M, Schlag J (1977) Visual and presaccadic neuronal activity in thalamic internal medullary lamina of cat: a study of targeting. J Neurophysiol 40: 156–173.

    Google Scholar 

  • Sherman SM, Spear PD (1982) Organization of visual pathways in normal and visually deprived cats. Physiolog Rev 62: 738–855.

    Google Scholar 

  • Strick PL (1973) Light microscopic analysis of the cortical projection of the thalamic ventrolateral nucleus in the cat. Brain Res 55: 1–24.

    Google Scholar 

  • Sugimoto T, Mizuno N, Itoh K (1981) An autoradiographic study on the terminal distribution of cerebellothalamic fibers in the cat. Brain Res 215: 29–47.

    Google Scholar 

  • Tanaka D Jr, Sakai ST, Gorska T (1983) Corticothalamic projections from postcruciate area 4 in the dog. J Comp Neurol 214: 17–31.

    Google Scholar 

  • Tanji DG, Wise SP, Dykes RW, Jones EG (1978) Cytoarchitecture and thalamic connectivity of third somatosensory area of cat cerebral cortex. J Neurophysiol 41: 268–284.

    Google Scholar 

  • Updyke BV (1983) A reevaluation of the functional organization and cytoarchitecture of the feline lateral posterior complex, with observations on adjoining cell groups. J Comp Neurol 219: 143–181.

    Google Scholar 

  • Welker WI, Johnson JI Jr (1965) Correlation between nuclear morphology and somatotopic organization in ventro-basal complex of the raccoon's thalamus. J Anat 99: 761–790.

    Google Scholar 

  • Wiberg M, Blomqvist A (1983) The spinomesencephalic tract in the cat: its cells of origin and termination pattern as demonstrated by the intraaxonal transport method. Brain Res 291: 1–18.

    Google Scholar 

  • Willis WD (1983) The spinothalamic tract. In: Rosenberg RN (ed) The clinical neurosciences. Section V, Willis WD (ed) Neurobiology. Churchill-Livingstone, Edinburgh, pp 325–356.

    Google Scholar 

  • Willis WD, Kenshalo DR Jr, Leonard RB (1979) The cells of origin of the primate spinothalamic tract. J Comp Neurol 188: 543–574.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Craig, A.D., Burton, H. The distribution and topographical organization in the thalamus of anterogradely-transported horseradish peroxidase after spinal injections in cat and raccoon. Exp Brain Res 58, 227–254 (1985). https://doi.org/10.1007/BF00235306

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00235306

Key words

Navigation