Skip to main content
Log in

Low conductance states of a single ion channel are not ‘closed’

  • Articles
  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Abstract

We have used a polymer-exclusion method to estimate the sizes of the high and low-conductance states of Staphylococcus aureus α-toxin channels across planar lipid bilayers. Despite a >10-fold difference in conductance between high and low-conductance states, the size differs by <2-fold. We conclude that factors other than the dimensions have a strong influence on the conductance of α-toxin channels. We also show that the high conductance state is destabilized by the presence of high molecular weight polymers outside the channel, compatible with the removal of channel water as the high conductance state “shrinks” to the low conductance state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alder, G.M., Bashford, C.L., Pasternak, C.A. 1990. Action of diphtheria toxin does not depend on the induction of large, stable pores across biological membranes. J. Membrane Biol. 113:67–74

    Google Scholar 

  • Bashford, C.L., Menestrina, G., Henkart, P.A., Pasternak, C.A. 1988. Cell damage by cytolysin. Spontaneous recovery and reversible inhibition by divalent cations. J. Immunol. 141:3965–3974

    Google Scholar 

  • Belmonte, G., Cescatti, L., Ferrari, B., Nicolussi, T., Ropele, M., Menestrina, G. 1987. Pore formation by staphylococcus-aureus alphatoxin in lipid bilayers-dependence upon temperature and toxin concentration. Euro. Biophys. J. 14:349–358

    Google Scholar 

  • Benz, R. 1984. Structure and selectivity of porin channels. In: Current Topics in Membranes and Transport, Vol. 21. W.D. Stein, editor, pp. 199–219. Academic, London

    Google Scholar 

  • Bezrukov, S.M., Kasianowicz, J.J. 1993. Current noise reveals protonation kinetics and number of ionizable sites in an open protein ion channel. Physical Rev. Lett. 70:2352–2355

    Google Scholar 

  • Bezrukov, S.M., Vodyanoy, I. 1993. Probing alamethicin channels with water-soluble polymers. Biophys. J. 64:16–25

    Google Scholar 

  • Bhakdi, S., Muhly, M., Fussle, R. 1984. Correlation between toxin binding and hemolytic activity in membrane damage by staphylococcal alpha-toxin. Infect. Immun. 46:318–323

    Google Scholar 

  • Bhakdi, S., Tranum-Jensen, J. 1987. Damage to mammalian cells by proteins that form transmembrane pores. Rev. Physiol. Biochem. Pharmacol. 107:147–223

    Google Scholar 

  • Donovan, J.J., Simon, M.I., Draper, R.K., Montal, M. 1981. Diphtheria toxin forms transmembrane channels in planar lipid bilayers. Proc. Natl. Acad. Sci. USA 78:172–176

    Google Scholar 

  • Edmonds, D.T. 1985. The alpha-helix dipole in membranes-a new gating mechanism for ion channels. Eur. Biophys. J. 13:31–35

    Google Scholar 

  • Edmonds, D.T. 1988. The different screening of electric charges and dipoles near a dielectric interface. Eur. Biophys. J. 16:255–257

    Google Scholar 

  • Guo, X.W., Mannella, C.A. 1993. Conformational change in the mitochondrial channel, VDAC, detected by electron cryo-microscopy. Biophys. J. 64:545–549

    Google Scholar 

  • Habermann, E. 1972. Bee and wasp venom. Science 177:314–322

    Google Scholar 

  • Henkart, P.A. 1985. Mechanism of lymphocyte-mediated cytotoxity. Annu. Rev. Immunol. 3:31–58

    Google Scholar 

  • Hille, B. 1992. Ionic channels of Excitable Membranes. Sinauer Associates, Sunderland, MA

    Google Scholar 

  • Kagan, B.L., Finkelstein, A., Colombini, M. 1981. Diphtheria toxin fragment forms large pores in phospholipid bilayer membranes. Proc. Natl. Acad. Sci. USA 78:4950–4954

    Google Scholar 

  • Korchev, Y.E., Alder, G.M., Bakhramov, A., Bashford, C.L., Joomun, B.S., Sviderskaya, E.V., Usherwood, P.N.R., Pasternak, C.A. 1995. Staphylococcus aureus alpha toxin-induced pores: channel-like behavior in lipid bilayers and patch-clamped cells. J. Membrane Biol. 143:143–151

    Google Scholar 

  • Krasilnikov, O.V., Sabirov, R.Z. 1989. Ion transport through channels formed in lipid bilayers by Staphylococcus aureus alpha-toxin. Gen. Physiol. Biophys. 8:213–222

    Google Scholar 

  • Krasilnikov, O.V., Sabirov, R.Z., Ternovsky, V.I., Merzliak, P.G., Muratkhodjaev, J.N. 1992. A simple method for the determination of the pore radius of ion channels in planar lipid bilayer membranes. FEMS Microbiol. Immunol. 5:93–100

    Google Scholar 

  • Krasilnikov, O.V., Sabirov, R.Z., Ternovsky, V.I., Merzliak, P.G., Tashmukhamedov, B.A. 1988. The structure of Staphylococcus aureus alpha-toxin-induced ionic channels. Gen. Physiol. Biophys. 7:467–473

    Google Scholar 

  • Kuga, S. 1981. Pore-size distribution analysis of gel substances by size exclusion chromatography. J. Chromat. 206:449–461

    Google Scholar 

  • Lev, A.A., Korchev, Y.E., Rostovtseva, T.K., Bashford, C.L., Edmonds, D.T., Pasternak, C.A. 1993. Rapid switching of ion current in narrow pores: implications for biological ion channels. Proc. R. Soc. London B 252:187–192

    Google Scholar 

  • Mayer, M.M. 1972. Mechanism of cytolysis by complement. Proc. Natl. Acad. Sci. USA 69:2954–2958

    Google Scholar 

  • Menestrina, G. 1986. Ionic channels formed by Staphylococcus aureus alpha-toxin: Voltage-dependent inhibition by divalent and trivalent cations. J. Membrane Biol. 90:177–190

    Google Scholar 

  • Menestrina, G., Bashford, C.L., Pasternak, C.A. 1990. Pore-forming toxins: experiments with S. aureus alpha-toxin, C. perfringens theta-toxin and E. coli haemolysin in lipid bilayers, liposomes and intact cells. Toxicon 28:477–491

    Google Scholar 

  • Menestrina, G., Pasquali, F. 1985. Reconstitution of the complement channel into lipid vesicles and planar bilayers starting from the fluid phase complex. Biosci. Rep. 5:129–136

    Google Scholar 

  • Montal, M., Mueller, P. 1972. Formation of bimolecular membranes from lipid monolayers and a study of their electrical properties. Proc. Natl. Acad. Sci. USA 69:3561–3566

    Google Scholar 

  • Nekolla, S., Andersen, C., Benz, R. 1994. Noise-analysis of ion current through the open and the sugar-induced closed state of the LamB channel of Escherichia coli outer membrane: Evaluation of the sugar binding kinetics to the channel interior. Biophys. J. 66:1388–1397

    Google Scholar 

  • Oiki, S., Koeppe, R.E., Andersen, O.S. 1994. Asymmetric gramicidin channels: heterodimeric channels with a single F6Val1 residue. Biophys. J. 66:1823–1832

    Google Scholar 

  • Pasternak, C.A., Alder, G.M., Bashford, C.L., Korchev, Y.E., Pederzolli, C., Rostovseva, T.K. 1992. Membrane damage: common mechanisms of induction and prevention. FEMS Microbiol. Immunol. 105:83–92

    Google Scholar 

  • Pasternak, C.A., Bashford, C.L., Korchev, Y.E., Rostovtseva, T.K., Lev, A.A. 1993. Modulation of surface flow by divalent cations and protons. Colloids and Surfaces 77:119–124

    Google Scholar 

  • Powell, G.M. 1980. Polyethylene glycol. In: Handbook of Water-Soluble Gums and Resins. R.L. Davidson, editor, pp. 18–1–18–31. McGraw Hill, New York

    Google Scholar 

  • Rostovtseva, T.K., Bashford, C.L., Lev, A.A., Pasternak, C.A. 1994. Triton channels are sensitive to divalent cations and protons. J. Membrane Biol. 141:83–90

    Google Scholar 

  • Schein, S.J., Kagan, B.L., Finkelstein, A. 1978. Colicin K acts by forming voltage-dependent channels in phospholipid bilayer membranes. Nature 276:159–163

    Google Scholar 

  • Schindler, H. 1980. Formation of planar bilayers from artificial or native membrane vesicles. FEBS Lett. 122:77–79

    Google Scholar 

  • Smart, O.S., Goodfellow, J.M., Wallace, B.A. 1993. The pore dimensions of gramicidin A. Biophys. J. 65:2455–2460

    Google Scholar 

  • Thelestam, M., Blomqvist, L. 1988. Staphylococcal alpha toxin — recent advances. Toxicon 26:55–65

    Google Scholar 

  • Tosteson, M.T., Tosteson, D.C. 1978. Bilayers containing gangliosides develop channels when exposed to cholera toxin. Nature 275:142–144

    Google Scholar 

  • Tosteson, M.T., Tosteson, D.C. 1981. The sting. Melittin forms channels in lipid bilayers. Biophys. J. 36:109–116

    Google Scholar 

  • Trias, J., Benz, R. 1993. Characterization of the channel formed by the mycobacterial porin in lipid bilayer membranes. Demonstration of voltage gating and of negative point charges at the channel mouth. J. Biol. Chem. 268:6234–6240

    Google Scholar 

  • Unwin, N. 1995. Acetylcholine receptor channel imaged in the open state. Nature 373:37–43

    Google Scholar 

  • Young, J.D.E., Leong, G.L., Liu, C-C., Damiano, A., Cohn, Z.A. 1986. Extracellular release of lymphocyte cytolytic pore-forming protein (perforin) after ionophore stimulation. Proc. Natl. Acad. Sci. USA 83:5668–5672

    Google Scholar 

  • Zambrowicz, E.B., Colombini, M. 1993. Zero-current potentials in a large membrane channel: a simple theory accounts for complex behaviour. Biophys. J. 65:1093–1100

    Google Scholar 

  • Zimmerberg, J., Bezanilla, F., Parsegian, V.A. 1990. Solute inaccessible aqueous volume changes during opening of the potassium channel of the squid giant-axon. Biophys. J. 57:1049–1064

    Google Scholar 

  • Zimmerberg, J., Parsegian, V.A. 1986. Polymer inaccessible volume changes during opening and closing of a voltage-dependent ionic channel. Nature 323:36–39

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

We are grateful to Drs. D.T. Edmonds, A.A. Lev and V.A. Parsegian for fruitful discussion and to the Cell Surface Research Fund, the Science and Engineering Research Council, The Wellcome Trust, UNESCO (Molecular and Cellular Biology Network) and the National Academy of Sciences/National Research Council for financial support.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Korchev, Y.E., Bashford, C.L., Alder, G.M. et al. Low conductance states of a single ion channel are not ‘closed’. J. Membarin Biol. 147, 233–239 (1995). https://doi.org/10.1007/BF00234521

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00234521

Key words

Navigation