Skip to main content
Log in

Physical properties of voltage gated pores

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

Experiments on single ionic channels have contributed to a large extent to our current view on the function of cell membrane. In these experiments the main observables are the physical quantities: ionic concentration, membrane electrostatic potential and ionic fluxes, all of them presenting large fluctuations. The classical theory of Goldman–Hodking–Katz assumes that an open channel can be well described by a physical pore where ions follow statistical physics. Nevertheless real molecular channels are active pores with open and close dynamical states. By skipping the molecular complexity of real channels, here we present the internal structure and calibration of two active pore models. These models present a minimum set of degrees of freedom, specifically ion positions and gate states, which follow Langevin equations constructed from a unique potential energy functional and by using standard rules of statistical physics. Numerical simulations of both models are implemented and the results show that they have dynamical properties very close to those observed in experiments of Na and K molecular channels. In particular a significant effect of the external ion concentration on gating dynamics is predicted, which is consistent with previous experimental observations. This approach can be extended to other channel types with more specific phenomenology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Hille, Ion channels of excitable membranes, 3rd edn. (Sinauer, Sunderland, MA, 2001)

  2. C. Hammond, Cellular and molecular neurophysiology, 4th edn. (Academic Press, London, 2015)

  3. R. Phillips, J. Kondev, J. Theriot, Physical biology of the cell (Garland Science, New York, NY, 2009)

  4. A.L. Hodgkin, A.F. Huxley, J. Phys. 117, 500 (1952)

    Google Scholar 

  5. P. Jung, J. Shuai, Europhys. Lett. 56, 29 (2001)

    Article  ADS  Google Scholar 

  6. G. Schmid, I. Goychuk, P. Hänggi, Europhys. Lett. 56, 22 (2001)

    Article  ADS  Google Scholar 

  7. M. Ozer, M. Perc, M. Uzuntarla, Europhys. Lett. 86, 40008 (2009)

    Article  ADS  Google Scholar 

  8. J.R. Groff, H. DeRemigio, G.D. Smith, in Stochastic methods in neuroscience, edited by C. Laing, G.J. Lord (Oxford University Press, New York, NY, 2009), p. 29

  9. Y. Huang, S. Rüdiger, J. Shuai, Eur. Phys. J. B 83, 401 (2011)

    Article  ADS  Google Scholar 

  10. L. Ramírez-Piscina, J.M. Sancho, Europhys. Lett. 108, 50008 (2014)

    Article  ADS  Google Scholar 

  11. L. Ramírez-Piscina, J.M. Sancho, Physica A, submitted

  12. D.E. Goldman, J. Gen. Physiol. 27, 37 (1943)

    Article  Google Scholar 

  13. D. Sigg, F. Bezanilla, E. Stefani, Proc. Natl. Acad. Sci. USA 100, 7611 (2003)

    Article  ADS  Google Scholar 

  14. R.D. Coalson, J. Phys. A: Math. Theor. 41, 115001 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  15. E.M. Izhikevich, Dynamical systems in neuroscience (The MIT Press, Cambridge, 2010)

  16. R. Roux, F. Bezanilla, in Molecular machines, edited by B. Roux (World Scientific, Singapore, 2011), p. 231

  17. R. Swenson, C. Armstrong, Nature 291, 427 (1981)

    Article  ADS  Google Scholar 

  18. K.S. Cole, J.W. Moore, J. Gen. Physiol. 44, 123 (1960)

    Article  Google Scholar 

  19. F. Sigworth, E. Neher, Nature 287, 447 (1980)

    Article  ADS  Google Scholar 

  20. W. Stühmer, M. Stocker, B. Sakmann, P. Seeburg, A. Baumann, A. Grupe, O. Pongs, FEBS Lett. 242, 199 (1988)

    Article  Google Scholar 

  21. M.H. Cheng, A.B. Mamonov, J.W. Dukes, R.D. Coalson, J. Phys. Chem. B 111, 5956 (2007)

    Article  Google Scholar 

  22. O. Teijido, S.M. Rappaport, A. Chamberlin, S.Y. Noskov, V.M. Aguilella, T.K. Rostovtseva, S.M. Bezrukov, J. Biol. Chem. 289, 23670 (2014)

    Article  Google Scholar 

  23. X. Jianxue, G. Yunfan, R. Wei, H. Sanjue, W. Fuzhou, Physica D 100, 212 (1997)

    Article  ADS  Google Scholar 

  24. S.P. Dawson, O.D. Uchitel, Physica D 168, 356 (2002)

    Article  ADS  Google Scholar 

  25. Y.W. Parc, D.S. Koh, W. Sung, Eur. Phys. J. B 69, 127 (2009)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laureano Ramírez-Piscina.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramírez-Piscina, L., Sancho, J.M. Physical properties of voltage gated pores. Eur. Phys. J. B 91, 10 (2018). https://doi.org/10.1140/epjb/e2017-80569-5

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2017-80569-5

Keywords

Navigation