Skip to main content
Log in

The topological analysis of integral cytoplasmic membrane proteins

  • Topical Review
  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

We review three general approaches to determining the topology of integral cytoplasmic membrane proteins. (i) Inspection of the amino acid sequence and use of algorithms to predict membrane spanning segments allows the construction of topological models. For many proteins, the mere identification of such segments and an analysis of the distribution of basic amino acids in hydrophilic domains leads to correct structure predictions. For others, additional factors must come into play in determining topology, (ii) Gene fusion analysis of membrane proteins, in many cases, leads to complete topological models. Such analyses have been carried out in both bacteria and in the yeast Saccharomyces cerevisiae. Conflicts between results from gene fusion analysis and other approaches can be used to explore details of the process of membrane protein assembly. For instance, anomalies in gene fusion studies contributed evidence for the important role of basic amino acids in determining topolog. (iii) Biochemical probes and the site of natural biochemical modifications of membrane proteins give information on their topology. Chemical modifiers, proteases and antibodies made to different domains of a membrane protein can identify which segments of the protein are in the cytoplasm and which are on the extracytoplasmic side of the membrane. Sites of such modifications as glycosylation and phosphorylation help to specify the location of particular hydrophilic domains. The advantages and limitations of these methods are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ahmad, M., Bussey, H. 1988. Mol. Microbiol., 2:627–635

    Google Scholar 

  2. Altenbach, C., Marti, T., Khorana, H.G., Hubbell, W.L. 1990. Science 248:1088–1092

    Google Scholar 

  3. Andersson, H., Bakker, E., von Heijne, G. 1992. J. Biol. Chem. 267:1491–1495

    Google Scholar 

  4. Ballesteros, J.A., Weinstein, H. 1992. Biophys. J. 62:127–128

    Google Scholar 

  5. Beckwith, J., Silhavy, T.J. 1992. The Power of Bacterial Genetics: A Literature-Based Course. Cold Spring Harbor Laboratory Plainview

  6. Blobel, G. 1980. Proc. Natl. Acad. Sci. USA 77:1496–1500

    Google Scholar 

  7. Bowler, L.D., Spratt, B.G. 1989. Mol. Microbiol., 3:1277–1286

    Google Scholar 

  8. Boyd, D., Beckwith, J. 1989. Proc. Natl. Acad. Sci. USA 86:9446–9450

    Google Scholar 

  9. Boyd, D., Beckwith, J. 1990. Cell 62:1031–1033

    Google Scholar 

  10. Boyd, D., Manoil, C., Beckwith, J. 1987. Proc. Natl. Acad. Sci. USA 84:8525–8529

    Google Scholar 

  11. Broome-Smith, J.K., Tadayyon, M., Zhang, Y. 1990. Mol. Microbiol., 4:1637–1644

    Google Scholar 

  12. Calamia, J., Manoil, C. 1990. Proc. Natl. Acad. Sci. USA 87:4937–4941

    Google Scholar 

  13. Calamia, J., Manoil, C. 1992. J. Mol. Biol. 224:539–543

    Google Scholar 

  14. Carrasco, N., Herzlinger, D., Danho, W., Kaback, H.R 1986. Meth. Enzymol. 125:453–467

    Google Scholar 

  15. Chavez, R.A., Hall, Z.W. 1991. J. Biol. Chem. 266: 15532–15538

    Google Scholar 

  16. Chun, S., Parkinson, J.S. 1988. Science 239:276–278

    Google Scholar 

  17. Crimi, M., Degli Esposti, M. 1991. TIBS 16:119–119

    Google Scholar 

  18. Cronan, J.E., Jr. 1990. J. Biol. Chem. 265:10327–10333

    Google Scholar 

  19. Dalbey, R.E. 1990. TIBS 15:253–257

    Google Scholar 

  20. Davies, A., Ciardelli, T.L., Lienhard, G.E., Boyle, J.M., Whetton, A.D., Baldwin, S.A. 1990. Biochem. J. 266:799–808

    Google Scholar 

  21. Derman, A.I., Beckwith, J. 1991. J. Bacteriol. 173s:7719–7722

    Google Scholar 

  22. Deshaies, R.J., Schekman, R. 1990. Mol. Cell. Biol., 10:6024–6035

    Google Scholar 

  23. Dohlman, H.G., Bouvier, M., Benovic, J.L., Caron, M.G., Lefkowitz, R.J. 1987. J. Biol. Chem. 262:14282–14288

    Google Scholar 

  24. Duchêne, A.M., Patte, J., Gutierrez, C., Chandler, M. 1992. Gene 114:103–107

    Google Scholar 

  25. Edelman, A.M., Blumenthal, D.K., Krebs, E.G. 1987. Annu. Rev. Biochem. 56:567–613

    Google Scholar 

  26. Ehrmann, M., Boyd, D., Beckwith, J. 1990. Proc. Natl. Acad. Sci. USA 87:7574–7578

    Google Scholar 

  27. Eisenberg, D. 1984. Annu. Rev. Biochem. 53:595–623

    Google Scholar 

  28. Fasman, G.D., Gilbert, W.A. 1990. TIBS 15:89–92

    Google Scholar 

  29. Freissmuth, M., Selzer, E., Marullo, S., Schültz, W., Strosberg, A.D. 1991. Proc. Natl. Acad. Sci. USA 88:8548–8552

    Google Scholar 

  30. Froshauer, S., Green, G.N., Boyd, D., McGovern, K., Beckwith, J. 1988. J. Mol. Biol. 200:501–511

    Google Scholar 

  31. Gardel, C., Johnson, K., Jacq, A., Beckwith, J. 1990. EMBO J. 9:3209–3216

    Google Scholar 

  32. Georgiou, C.D., Dueweke, T.J., Gennis, R.B. 1988. J. Biol. Chem. 263:13130–13137

    Google Scholar 

  33. Green, G.N., Hansen, W., Walter, P. 1989. J. Cell Sci. Suppl. 11:109–113

    Google Scholar 

  34. Hertzberg, E.L., Hinkle, P.C. 1974. Biochem. Biophys. Res. Comm. 58:178–184

    Google Scholar 

  35. Hoffman, C., Wright, A. 1985. Proc. Natl. Acad. Sci. USA 82:5107–5111

    Google Scholar 

  36. Huang, K.-S., Bayley, H., Liao, M.-J., London, E., Khorana, H.G. 1981. J. Biol. Chem. 256:3802–3809

    Google Scholar 

  37. Hunter, T., Cooper, J.A. 1985. Annu. Rev. Biochem. 54:897–930

    Google Scholar 

  38. Jennings, M.L. 1989. Annu. Rev. Biochem. 58:999–1027

    Google Scholar 

  39. Kaback, H.R. 1971. Meth. Enzymol. 22:99–120

    Google Scholar 

  40. Klein, P., Kanehisa, M., DeLisi, C. 1985. Biochim. Biophys. Acta 815:468–476

    Google Scholar 

  41. Kornfeld, R., Kornfeld, S. 1985. Annu. Rev. Biochem. 54:631–664

    Google Scholar 

  42. Kyte, J., Doolittle, R.F., 1982. J. Mol. Biol. 157:105–132

    Google Scholar 

  43. Laws, J.K., Dalbey, R.E. 1989. EMBO J. 8:2095–2099

    Google Scholar 

  44. Lee, C., Li, P., Inouye, H., Beckwith, J. 1989. J. Bacteriol. 171:4609–4616

    Google Scholar 

  45. Maher, P.A., Singer, S.J. 1986. Proc. Natl. Acad. Sci. USA 83:9001–9005

    Google Scholar 

  46. Maloney-Huss, K., Lybrand, T. 1992. J. Mol. Biol. 225:859–871

    Google Scholar 

  47. Manoil, C. 1990. J. Bacteriol. 172:1035–1042

    Google Scholar 

  48. Manoil, C., Beckwith, J. 1985. Proc. Natl. Acad. Sci. USA 82:8129–8133

    Google Scholar 

  49. Manoil, C., Beckwith, J. 1986. Science 233:1403–1408

    Google Scholar 

  50. McCrea, P.D., Engleman, D.M., Popot, J.-L. 1988. TIBS 13:289–290

    Google Scholar 

  51. McGovern, K., Ehrmann, M., Beckwith, J. 1991. EMBO J. 10:2773–2782

    Google Scholar 

  52. Michaelis, S., Inouye, I., Oliver, D., Beckwith, J. 1983. J. Bacteriol. 154:366–374

    Google Scholar 

  53. Mueckler, M., Caruso, C., Baldwin, S.A., Panico, M., Blench, I., Morris, H.R., Allard, W.J., Lienhard, G.E., Lodish, H.F. 1985. Science 230:941–945

    Google Scholar 

  54. Nilsson, I., von Heijne, G. 1990. Cell 62:1135–1141

    Google Scholar 

  55. Ovchinnikov, Y.A., Abdulaev, N.G., Vasilov, R.G., Vturina, I.Y., Kuryatov, A.B., Kiselev, A.V. 1985. FEBS Lett. 179:343–350

    Google Scholar 

  56. Page, M.G.P., Rosenbusch, J.P. 1988. J. Biol. Chem. 263:15906–15914

    Google Scholar 

  57. Popot, J.-L., Engelman, D.M. 1990. Biochemistry 29:4031–4037

    Google Scholar 

  58. Popot, J.-L., Gerchman, S.-E., Engelman, D.M. 1987. J. Mol. Biol. 198:655–676

    Google Scholar 

  59. Randall, L.L., Hardy, S.J.S. 1986. Cell 46:921–928

    Google Scholar 

  60. Rao, A., Martin, P., Reithmeier, R.A.F., Cantley, L.C. 1979. Biochemistry 18:4505–4516

    Google Scholar 

  61. Rao, J.K.M., Argos, P. 1986. Biochim. Biophys. Acta 869:197–214

    Google Scholar 

  62. Reed, K.E., Cronan, J.E., Jr. 1991. J. Biol. Chem. 266:11425–11428

    Google Scholar 

  63. San Millan, J.L., Boyd, D., Dalbey, R., Wickner, W., Beckwith, J. 1989. J. Bacteriol. 171:5536–5541

    Google Scholar 

  64. Sarkar, H.K., Thorens, B., Lodish, H.F., Kaback, H.R. 1988. Proc. Natl. Acad. Sci USA 85:5463–5467

    Google Scholar 

  65. Senstag, C., Stirling, C., Schekman, R., Rine, J. 1990. Mol. Cell Biol. 10:672–680

    Google Scholar 

  66. Singer, S.J. 1990. Annu. Rev. Cell Biol. 6:247–296

    Google Scholar 

  67. Steck, T.L. 1974. J. Cell Biol. 62:1–5

    Google Scholar 

  68. Stock, J.B., Ninfa, A.J., Stock, A.M. 1989. Microbiol. Rev. 53:450–490

    Google Scholar 

  69. Sugiyama, J.E., Mahmoodian, S., Jacobson, G.R. 1991. Proc. Natl. Acad. Sci. USA 88:9603–9607

    Google Scholar 

  70. Tadayyon, M., Broome-Smith, J.K. 1992. Gene 111:21–26

    Google Scholar 

  71. Traxler, B., Beckwith, J. 1992. Proc. Natl. Acad. Sci. USA 89:10852–10856.

    Google Scholar 

  72. Verrall, S., Hall, Z.W. 1992. Cell 68:23–31

    Google Scholar 

  73. von Heijne, G. 1986. EMBO J. 5:3021–3027

    Google Scholar 

  74. von Heijne, G. 1989. Nature 341:456–458

    Google Scholar 

  75. von Heijne, G., Gavel, Y. 1988. Eur. J. Biochem. 174:671–678

    Google Scholar 

  76. von Heijne, G., Manoil, C. 1990. Protein Engineering 4:109–112

    Google Scholar 

  77. Wang, H.-Y., Lipfert, L., Malbon, C.C., Bahouth, S. 1989. J. Biol. Chem. 264:14424–14431

    Google Scholar 

  78. Wilmes-Riesenberg, M.R., Wanner, B.L. 1992. J. Bacteriol. 174:4558–4575

    Google Scholar 

  79. Yaeger, M., Gilula, N.B. 1992. J. Mol. Biol. 223:929–948

    Google Scholar 

  80. Yu, X.-M., Hall, Z.W. 1991. Nature 352:64–67

    Google Scholar 

  81. Yun, C.-H., Van Doren, S.R., Crofts, A.R., Gennis, R.B. 1991. J. Biol.Chem. 266:10967–10973

    Google Scholar 

  82. Zhang, Y., Broome-Smith, J.K. 1990. Gene 96:51–57

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This work was supported by a fellowship from the National Institute of General Medical Sciences to B.T., by a grant from the National Science Foundation to D.B. and by a grant from the National Institutes of Health to J.B.. J.B. is an American Cancer Society Research Professor.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Traxler, B., Boyd, D. & Beckwith, J. The topological analysis of integral cytoplasmic membrane proteins. J. Membarin Biol. 132, 1–11 (1993). https://doi.org/10.1007/BF00233047

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00233047

Key Words

Navigation