Skip to main content
Log in

Organogenesis in Camellia x williamsii: cytokinin requirement and susceptibility to antibiotics

  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Summary

The genetic transformation of plants calls for efficient organogenetic methods. Both cytokinins and antibiotics were tested to evaluate shoot regeneration from internodes of in vitro plants of Camellia x williamsii cv Debbie. High regeneration rates were achieved by using thidiazuron, which turned out to be more effective than 6-benzylaminopurine. Up to 96% of explants regenerated when thidiazuron was used, whereas no more than 75% regenerated using 6-benzylaminopurine. The best average number of shoots per regenerant explant was 9.7 and 5.6 regarding respectively thidiazuron and 6-benzylaminopurine. Kanamycin, used in combination with the best performing thidiazuron concentration, completely blocked regeneration at 129 μM. Cefotaxime at 524 μM decreased the regeneration ability, especially when 2 day preculture was applied. The application of genetic transformation protocols as well as the main aims of genetic engineering in ornamental camellias are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

MS:

Murashige & Skoog

WPM:

Woody Plant Medium

BA:

6-benzylaminopurine

TDZ:

thidiazuron

IBA:

indole butyric acid

NPTII :

neomycin phosphotransferase II

CaMV:

Cauliflower Mosaic Virus

References

  • Courtney-Gutterson N, Napoli C, Lemieux C, Morgan A, Firoozabady E, Robinson KEP (1994) Biotechnology 12: 268–271

    Google Scholar 

  • de Jong J, Martens MMJ, Rademarker W (1994) Plant Cell Reports 14: 59–64

    Google Scholar 

  • Elomaa P, Honkanen J, Puska R, Seppanen P, Helariutta Y, Mehto M, Kotilainen M, Nevalainen L, Teeri TH (1993) Biotechnology 11: 508–511

    Google Scholar 

  • Fasolo F, Zimmerman RH, Fordham I (1989) Plant Cell Tiss. Org. Cult. 16: 75–87

    Google Scholar 

  • George MW, Tripepi RR (1994) Plant Cell Tiss. Org.Cult. 39: 27–36

    Google Scholar 

  • Golds TJ, Davey MR, Rech EL Power JB (1990) In: Pollard and Walker (eds) Plant cell and tissue colture, Methods in Molecular Biology Vol. 6, Humana Press, Clifton, pp 341–371

    Google Scholar 

  • Holton TA, Brugliera F, Lester DR, Tanaka Y, Hyland CD, Menting JGT, Lu CY, Farcy E, Stevenson TW, Cornish EC (1993) Nature 366: 276–279

    Article  CAS  PubMed  Google Scholar 

  • Holton TA, Tanaka Y (1994) Trends in Biotechnology 12(2): 40–42

    Google Scholar 

  • Horsch RB, Fry J, Hoffmann N, Eichholtz D, Rogers SG, Fraley RT (1985) Science 227: 1229–1231

    CAS  Google Scholar 

  • Horsch RB, Fry J, Hoffmann N, Neidermeyer J, Rogers SG, Fraley RT (1988) In: Gelvin and Schilperoot (eds) Plant Molecular Biology Manual Kluewer Academic Publishers, Dordrecht, A5:1–9

  • Huetterman A, Preece JE (1993) Plant Cell Tiss. Org. Cult. 33: 105–119

    Google Scholar 

  • Kato M (1986) Jpn. J. Breed. 36: 31–38

    Google Scholar 

  • Mathias RJ, Boyd LA (1986) Plant Science 46: 217–223

    Google Scholar 

  • McCown DD, McCown BH (1987) In: Bonga and Durzan (eds) Cell and tissue culture in forestry vol. 3 Martinus Nijhoff Publishers, Dordrecht, pp 247–260

    Google Scholar 

  • Mok MC, Mok DWS, Armstrong DJ (1980) Plant Physiol. 65(suppl.): 24(Abstr)

    Google Scholar 

  • Norelli JL, Aldwincle HS (1993) J. Amer. Soc. Hort.Sci. 118: 311–316

    Google Scholar 

  • Pedroso MC, Pais MS (1993) Plant Cell Rep. 12: 639–643

    Google Scholar 

  • Plata E, Vieitez AM (1990) J. Hort. Sc. 65: 707–714

    Google Scholar 

  • Preece JE, Imel MR (1991) Scientia Hort. 48: 159–170

    Google Scholar 

  • Renou JP, Brochard P, Jalouzot R (1993) Plant Science 89: 185–197

    Google Scholar 

  • San-José MC, Vieitez AM (1992) J. Hort. Sc. 67: 677–683

    Google Scholar 

  • Smigoki AC, Owens LD (1988) Proc. Nat. Ac. Sc. 85: 14

    Google Scholar 

  • Sriskandarajah S, Skirvin RM, Abu-Qaoud H, Korban SS (1990) J. Horticultural Science 65: 113–121

    Google Scholar 

  • Tosca A, Pandolfi R, Macchi A (1992) Acta Hort. 314: 69–76

    Google Scholar 

  • Tosca A, Pandolfi R (1993) Acta Hort. 336: 269–272

    Google Scholar 

  • Vieitez AM, Barciela J (1990) Plant Cell Tiss. Org. Cult. 21: 267–274

    Google Scholar 

  • Vieitez AM, San-José C, Vieitez FJ, Ballester A (1991) J. Amer. Soc. Hort. Sci. 116: 753–757

    Google Scholar 

  • Yang NS, Christou P (1990) Developmental Genetics 11: 289–293

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by I. Potrykus

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tosca, A., Pandolfi, R. & Vasconi, S. Organogenesis in Camellia x williamsii: cytokinin requirement and susceptibility to antibiotics. Plant Cell Reports 15, 541–544 (1996). https://doi.org/10.1007/BF00232990

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00232990

Keywords

Navigation