Skip to main content
Log in

Mechanism, regulation and physiological significance of the loop diuretic-sensitive NaCl/KCl symport system in animal cells

  • Review
  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Summary

Investigations in numerous laboratories have characterized a salt transport system, present in many animal cell types, which catalyzes the transmembrane transport of NaCl and KCI in a tightly coupled process. The system is inhibited by loop diuretics such as furosemide and bumetanide. This transport system has been designated the loop diuretic-sensitive NaCl/KCl symporter. It has been implicated in transepithelial salt secretion and absorption as well as in cell volume regulation, and it may be defective in patients suffering from essential hypertension. This review serves to evaluate research conducted to date regarding the mechanism, mode of regulation, and physiological significance of the transport system.

Ion binding specificities and absolute binding constants for all three naturally occurring ions have been determined in one cell system, the MDCK kidney epithelial cell line. In that same cell line, substrate binding was shown to exhibit apparent positive cooperativity. Although a few reports suggest unidirectional transport of ions via this system under certain conditions, the consensus of reports indicates fully reversible, bidirectional salt transport with the direction of net flux determined by the magnitudes of the gradients of the three transported ions. Growth of cells in media containing a low concentration of K+ (<0.25 mM) allows selection of mutants lacking or defective in the symporter.

Kinetic analyses with the MDCK cell line have shown that the symporter catalyzes accelerative exchange transport. However, exchange transport of one ion in the absence of one of the other two ionic substrates has not been documented. Comparison with other well-characterized transmembrane transport systems has shown that the characteristics of the NaCl/KCl symporter most resemble those of two-species facilitators (chemiosmotically-coupled symporters) found in prokaryotes and eukaryotes alike. These two-species facilitators consist of a single transmembrane protein and may function by a carrier-type mechanism as originally proposed by Peter Mitchell. A molecular model for the NaCl/KCl symporter is presented and discussed.

Activation of symport activity requires ATP and probably occurs by a protein kinase-catalyzed mechanism. In some cell types activation is cyclic AMP dependent. ATP hydrolysis is not stoichiometric with transport. Phosphorylation of an integral membrane protein with an apparent size of 240 000 daltons correlates with activation of transport. It is postulated that this protein is the loop diuretic-sensitive NaCl/KCl symporter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rindler, M. J., McRoberts, J. A. and Saier, M. H., Jr., 1982. J. Biol. Chem. 257: 2254–2259.

    Google Scholar 

  2. McRoberts, J. A., Erlinger, S., Rindler, M. J. and Saier, M. H., Jr., 1982. J. Biol. Chem. 257: 2260–2266.

    Google Scholar 

  3. Geck, P., Pietrzyk, C., Burckhardt, B.-C., Pfeiffer, B. and Heinz, E., 1980. Biochim. Biophys. Acta 600: 432–447.

    Google Scholar 

  4. Haas, Mark, Schmidt, W. F. and McManus, T. J., 1982. J. Gen. Physiol. 80: 125–147.

    Google Scholar 

  5. Frizzell, R. A., Field, M. and Schultz, S. G., 1979. Am. J. Physiol. 236(1): F1-F8.

    Google Scholar 

  6. Musch, M. A., Orellana, S. A., Kimberg, L. S., Field, M., Halm, D. R., Krasny, E. J., Jr. and Frizzell, R. A., 1982. Nature 300: 351–353.

    Google Scholar 

  7. Dills, S. S., Apperson, A., Schmidt, M. R. and Saier, M. H., Jr., 1980. Microbiol. Rev. 44: 385–418.

    Google Scholar 

  8. Saier, M. H., Jr., 1980. J. Supramol. Struc. 14: 281–294.

    Google Scholar 

  9. Saier, M. H., Jr., 1982. Membranes and Transport, (Martonosi, A., ed.), Vol. 2, pp. 27–32, Plenum Press, New York.

  10. Gargus, J. J., Miller, I. L., Slayman, C. W. and Adelberg, E. A., 1978. Proc. Natl. Acad. Sci. U.S.A. 75: 5589–5593.

    Google Scholar 

  11. Jayme, D. W., Adelberg, E. A. and Slayman, C. W., 1981. Proc. Natl. Acad. Sci. U.S.A. 78: 1057–1061.

    Google Scholar 

  12. Kregenow, F. M., 1981. Ann. Rev. Physiol. 43: 493–505.

    Google Scholar 

  13. Hoffmann. E. K., 1978. Osmotic and Volume Regulation (Jorgensen, C. B. and Rodhauge, E. S., eds.), pp. 397–412.

  14. Adragna, N., Canessa, M., Bize, I., Garay, R. and Tosteson, D. C., 1980. Fed. Proc. 39: 1237.

    Google Scholar 

  15. Garay, R., Adragna, N., Canessa, M. and Tosteson, D., 1981. Membrane Biol. 62: 169–174.

    Google Scholar 

  16. Canessa, M., Bize, I., Adragna, N. and Tosteson, D., 1982. J. Gen. Physiol. 80: 149–168.

    Google Scholar 

  17. Lew, V. L., Mualiem, S. and Seymour, C. A., 1980. Nature 296: 742–744.

    Google Scholar 

  18. Ernst, M. and Adams, G., 1981. J. Membrane Biol. 61: 155–172.

    Google Scholar 

  19. Armstrong, C. M., Swenson, R. P., Jr. and Taylor, S. R., 19. J. Gen. Physiol. 80: 603–682.

  20. Rindler, M. J., Taub, M. and Saier, M. H., Jr., 1979. J. Biol. Chem. 254: 11431–11439.

    Google Scholar 

  21. Taub, M. and Saier, M. H., Jr., 1979. J. Biol. Chem. 254: 11440–11444.

    Google Scholar 

  22. Rindler, M. J. and Saier, M. H., Jr., 1981. J. Biol. Chem. 256: 10820–10825.

    Google Scholar 

  23. Christensen, H. N., 1982. Physiol. Rev. 62: 1193–1233.

    Google Scholar 

  24. Gardner, J. D., Jow, N. and Kiino, D. R., 1975. J. Biol. Chem. 250: 1176–1185.

    Google Scholar 

  25. Gardner, J. D., Kiino, D. R., Jow, N. and Aurbach, G. D., 1975. J. Biol. Chem. 250: 1164–1175.

    Google Scholar 

  26. Gardner, J. D., Mensh, R. S., Kiino, D. R. and Aurbach, G. D., 1975. J. Biol. Chem. 250: 1155–1263.

    Google Scholar 

  27. Rudolph, S. A., Schafer, D. E. and Greengard, P., 1977. J. Biol. Chem. 252: 7132–7139.

    Google Scholar 

  28. Alper, S. L., Beam, K. G. and Greengard, P., 1980. J. Biol. Chem. 255: 4864–4871.

    Google Scholar 

  29. Alper, S. L., Palfrey, H. C., DeRiemer, S. A. and Greengard, P., 1980. J. Biol. Chem. 255: 11029–11039.

    Google Scholar 

  30. Rudolph, S. A. and Greengard, P., 1980. J. Biol. Chem. 255: 8534–8540.

    Google Scholar 

  31. Rindler, M. J., Chuman, L. M., Shaffer, L. and Saier, M. H., Jr., 1979. J. Cell Biol. 81: 635–648.

    Google Scholar 

  32. Erlinger, S. and Saier, M. H., Jr., 1982. In Vitro 18: 196–202.

    Google Scholar 

  33. Saier, M. H., Jr., Erlinger, S. and Boerner, Paula, 1982. Membranes in Growth and Development, pp. 569–597, Alan R. Liss, Inc., New York.

    Google Scholar 

  34. Boerner, P. and Saier, M. H., Jr., 1982. Cold Spring Harbor Conferences on Cell Proliferation (Sato, G. H., Pardee, A. B. and Sirbasku, D. A., eds.), 9: 555–565.

  35. Boerner, P. and Saier, M. H., Jr., 1982. J. Cell. Physiol. 113: 240–246.

    Google Scholar 

  36. Anholt, R., Lindstrom, J. and Montal, M., 1983. The Enzymes of Biological Membranes (A. Martinosi, ed.), Vol. 7, Plenum Press, New York, in press.

  37. Catterall, W. A., 1982. T.I.N.S. 9: 303–306.

    Google Scholar 

  38. Saier, M. H., Jr. and Stiles, C. D., 1975. Molecular Dynamics in Biological Membranes, Vol. 22, Springer-Verlag, New York.

    Google Scholar 

  39. Leonard, J. E., Lee, C., Apperson, A., Dills, S. S. and Saier, M. H., Jr., 1981. Organization of Prokaryotic Cell Membranes (Gosh, B. K., ed.), pp. 1–52, CRC Press.

  40. Heller, K. B., Lin, E. C. C. and Wilson, T. H., 1980. J. Bacteriol. 144: 274–278.

    Google Scholar 

  41. Baldwin, S. A. and Lienhard, G. E., 1981. T.I.N.S. 6: 208–211.

    Google Scholar 

  42. Knauf, P. A., 1979. Curr. Top. Memb. Transp. 12: 249–363.

    Google Scholar 

  43. Aquila, H., Eiermann, W., Babel, W. and Klingenberg, M., 1978. Eur. J. Biochem. 85: 549–560.

    Google Scholar 

  44. Newman, M. J., Foster, D. L., Wilson, T. H. and Kaback, H. R., 1981. J. Biol. Chem. 256: 11804–11808.

    Google Scholar 

  45. Tsuchiya, T., Ottina, K., Moriyama, Y., Newman, M. J. and Wilson, T. H., 1982. J. Biol. Chem. 257: 5125–5128.

    Google Scholar 

  46. Booth, I. R. and Hamilton, W. A., 1980. Microorganisms and Nitrogen Sources (Payne. J. W., ed.), John Wiley and Sons.

  47. Guidott, G. G., Borghetti, A. F. and Gazzola, G. C., 1978. Biochim. Biophys. Acta 515: 329–366.

    Google Scholar 

  48. Jorgensen, P. L., 1982. Biochim. Biophys. Acta 694: 27–68.

    Google Scholar 

  49. deMeis, L. and Vianna, A. L., 1979. Ann. Rev. Biochem. 48: 275–292.

    Google Scholar 

  50. Muñoz, E., 1982. Biochim. Biophys. Acta 650: 233–265.

    Google Scholar 

  51. Higgins, C. F., Haag, P. D., Nikaido, K., Ardeshir, F., Garcia, G. and Ames, G. F.-L., 1982. Nature 298: 723–727.

    Google Scholar 

  52. Stoeckenius, W., Lozier, R. H. and Bogomolni, R. A., 1978. Biochim. Biophys. Acta 505: 215–278.

    Google Scholar 

  53. Kadenbach, B. and Merle, P., 1981. FEBS Lett. 135: 1–11.

    Google Scholar 

  54. Lee, C. A. and Saier, M. H., Jr., 1983. J. Biol. Chem. 258: 10761–10767.

    Google Scholar 

  55. Erni, B., Trachsel, H., Postma, P. W. and Rosenbusch, J. P., 1982. J. Biol. Chem. 257: 13726–13730.

    Google Scholar 

  56. Saier, M. H., Jr., 1979. Microbiology, pp. 72–75. Am. Soc. Microbiol., Washington, D.C.

    Google Scholar 

  57. Kaczorowski, G. and Kaback, H. R., 1979. Biochemistry 18: 3691–3697.

    Google Scholar 

  58. West, I. C. and Wilson, T. H., 1973. Biochem. Biophys. Res. Commun. 50: 551–558.

    Google Scholar 

  59. Mitchell, P., 1981. Membrane Transport and Metabolism (Kleinzeller, A. and Kotzyk, A., eds.), Academic Press, New York.

  60. Stein, W. D., 1968. The Movements of Molecules Across Cell Membranes, Academic Press, New York.

    Google Scholar 

  61. Pressman, B. and Haynes, D. H., 1969. The Molecular Basis of Membrane Function (Tosteson, D. C., ed.), pp. 221–248, Prentice Hall, Englewood Cliffs, New Jersey.

  62. Nilsen-Hamilton, M. and Hamilton, R. T., 1979. Biochim. Biophys. Acta 588: 322–331.

    Google Scholar 

  63. Kregenow, F. M., 1977. Osmotic and Volume Regulation (Jorgensen, C. B. and Skadhauge, E., eds.), pp. 379–391, Academic Press, New York.

  64. Spring, K. R. and Ericson, A-C., 1982. J. Membrane Biol. 69:167–176.

    Google Scholar 

  65. Garay, R. P., Dagher, G., Pernollet, M-G., Devynck, M-A. and Meyer, P., 1980. Nature 284: 281–283.

    Google Scholar 

  66. Hamlyn, J. M., Ringel, R., Schaeffer, J., Levinson, P. D., Hamilton, B. P., Kowarski, A. A. and Blaustein, M. P., 1982. Nature 300: 650–652.

    Google Scholar 

  67. Blaustein, M. P., 1977. Am. J. Physiol. 232: C165.

    Google Scholar 

  68. Davidson, J. S., Opie, L. H. and Keding, B., 1982. Br. Med. J. 284: 539–541.

    Google Scholar 

  69. Aiton, J. F., Brown, C. D. A., Ogden, P. and Simmons, N. L., 1982. J. Membrane Biol. 65: 99–109.

    Google Scholar 

  70. Simmons, N. L., 1981. Biochim. Biophys. Acta 646: 231–242.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saier, M.H., Boyden, D.A. Mechanism, regulation and physiological significance of the loop diuretic-sensitive NaCl/KCl symport system in animal cells. Mol Cell Biochem 59, 11–32 (1984). https://doi.org/10.1007/BF00231303

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00231303

Keywords

Navigation