Skip to main content
Log in

Rabbit red blood cell hexokinase:intracellular distribution during reticulocytes maturation

  • Original Articles
  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Summary

The intracellular localization and isozyme distribution of hexokinase were studied during rabbit reticulocyte maturation and aging. In reticulocytes 50% of the enzyme was particulate while in the mature erythrocytes all the hexokinase activity was soluble. The bound enzyme co-sediments with mitochondria and by column chromatography it was found to be hexokinase Ia. The cytosol of reticulocytes contains hexokinase Ia (38%) and hexokinase Ib (62%) while the mature erythrocytes contain only hexokinase Ia. The amount of bound hexokinase decreases very quickly during cell maturation and aging as was shown by following in vivo reticulocyte maturation or by analysis of hexokinase compartmentation in cells of different ages, obtained by density gradient ultracentrifugations. A role for this intracellular distribution of hexokinase is suggested.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Brewer GJ: In: Surgenor D MacN (ed), The Red Blood Cell. Academic Press, New York, 1974, Vol 1, pp 387–433.

    Google Scholar 

  2. Rapoport TA, Heinrich R, Jacobasch G, Rapoport S: Eur J Biochem 42:107–120, 1974.

    Google Scholar 

  3. Minakami S, Yoshikawa H: J Biochem 59:139–144, 1966.

    Google Scholar 

  4. Rijksen G, Staal GEJ, Beks PJ, Streefkerk M, Akkerman JWN:Biochim Biophys Acta 719:431–437, 1982.

    Google Scholar 

  5. Magnani M, Dacha M, Stocchi V, Ninfali P and Fornaini G: J Biol Chem 255:1752–1756, 1980.

    Google Scholar 

  6. Anderson JW, Herman RH, Tyrell JB and Cohn RM: Am J Clin Nutr 24:642–650, 1971.

    Google Scholar 

  7. Gellerich FN and Augustin HW: Acta Biol Med Ger 38:1091–1099,1979.

    Google Scholar 

  8. Green DE, Murer E, Hultin HO, Richardson SH, Salmon B, Brierley GP and Baum H: Arch Biochem Biophys 112:635–647,1965.

    Google Scholar 

  9. Tillman W, Cordua A and Schröter W: Biochim Biophys Acta 382:157–171, 1975.

    Google Scholar 

  10. Rose IA and Warms JVB: J Biol Chem 242:1635–1645, 1967.

    Google Scholar 

  11. Wilson JE: In: Horecker BL, Stadtman ER (eds) Current Topics in Cellular Regulation. Academic Press, New York, 1980, Vol 16, pp 1–54.

    Google Scholar 

  12. Magnani M, Serafini G, Stocchi V, Bossù M and Dachà M: Arch Biochem Biophys 216:449–454, 1982.

    CAS  PubMed  Google Scholar 

  13. Salotra PT and Singh VN: Arch Biochem Biophys 216:758–764, 1982.

    Google Scholar 

  14. Hernandez A and Crane RK: Arch Biochem Biophys 113:223–229, 1966.

    Google Scholar 

  15. Chylack LT Jr: Ophthalmic Res 6:93–106, 1974.

    Google Scholar 

  16. Karpatkin S and Braun J: Biochim Biophys Acta 242:89–98, 1971.

    Google Scholar 

  17. Gustke HH: Enzyme 20:292–304, 1975.

    Google Scholar 

  18. Ballatori N and Cohen JJ: Biochim Biophys Acta 657:448–456,1981.

    Google Scholar 

  19. Bernstein RS and Kipnis DM: Diabetes 22:913–922, 1973.

    Google Scholar 

  20. Crane RK, Sols A:J Biol Chem 203:273–292, 1953.

    Google Scholar 

  21. Singh VN, Singh M, August JT, Horecker BL: Proc Natl Acad Sci USA 71:4129–4132, 1974.

    Google Scholar 

  22. Bustmante E, Pedersen PL: Proc Natl Acad Sci USA 74:3735–3739,1977.

    Google Scholar 

  23. Bustamante E, Morris HP and Pedersen PL: J Biol Chem 256:8699–8704,1981.

    Google Scholar 

  24. Kurokawa M, Oda S, Tsubotami E, Fujiwara H, Yokoyama K and Ishibashi S: Mol Cell Biochem 45:151–157, 1982.

    Google Scholar 

  25. Stocchi V, Magnani M, Canestrari F, Dachà M, Fornaini G: J Biol Chem 256:7856–7862, 1981.

    Google Scholar 

  26. Magnani M, Stocchi V, Dachà M, Canestrari F and Fornaini G: FEBS Lett 120:264–266, 1980.

    Google Scholar 

  27. Magnani M, Stocchi V, Dachà M, Fornaini G: Mol Cell Biochem 61:83–92, 1984.

    Google Scholar 

  28. Beutler E, West C and Blume KG: J Lab Clin Med 88:328–333,1979.

    Google Scholar 

  29. Beutler E: Red Cell Metabolism. A Manual of Biochemical methods, 2nd ed, Gruner and Stratton, New York, 1975.

    Google Scholar 

  30. Smidt E: Glutamate dehydrogenase. In: Bergmeyer H K (ed), Methods of Enzymatic Analysis. Academic Press, New York, 1974, pp 650–656.

    Google Scholar 

  31. Steck TL, Kant JA: In: Fleischer S, Packer L (eds), Methods in Enzymology. Academic Press, New York, 1974, Vol XXXI, pp 172–180.

    Google Scholar 

  32. Rapoport SM, Rosenthal S, Schewe T, Schultze M, Miller M: The metabolism of the reticulocyte. In: Yoshikawa H, Rapoport SM (eds), Urban & Schwarzenberg, Berlin, 1974, pp 93–141.

  33. Knull HR, Taylor WE and Wells WW: J Biol Chem 249:6930–6935,1974.

    Article  CAS  PubMed  Google Scholar 

  34. Gallerich FN and Augustin HW: Acta Biol Med Germ 36:571–577,1977.

    Google Scholar 

  35. Inui M and Ishibashi S:J Biochem 85:1151–1156,1979.

    Google Scholar 

  36. Kurokawa M, Toknaka S, Oda S, Tsubotami E and Ishibashi S: Biochem Int 2:645–650, 1981.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Magnani, M., Stocchi, V., Dachà, M. et al. Rabbit red blood cell hexokinase:intracellular distribution during reticulocytes maturation. Mol Cell Biochem 63, 59–65 (1984). https://doi.org/10.1007/BF00230162

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00230162

Keywords

Navigation