Skip to main content
Log in

The effects of aging on satellite cells in skeletal muscles of mice and rats

  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Summary

Myosatellite cells were examined and quantified at the fine structural level of resolution during aging of skeletal muscles in mice and rats. Satellite cells in the soleus and gastrocnemius muscles of animals between eight and 30 months of age appeared, according to morphological criteria, metabolically less active than those examined in immature muscles. In the soleus muscle of the mouse, satellite cells decreased in number from 4.6% at eight months of age to 2.4% at 30 months. This decrease appeared to be due to the passage of some satellite cells into the interstitial space as a result of the formation of external lamina material around the entire satellite cell surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allbrook, D.B., Han, M.F., Hellmuth, A.E.: Population of muscle satellite cells in relation to age and mitotic activity. Pathology 3, 233–243 (1971)

    Google Scholar 

  • Cardasis, C.A., Cooper, G.W.: An analysis of nuclear numbers in individual muscle fibers during differentiation and growth: A satellite cell-muscle fiber growth unit. J. exp. Zool. 191, 347–358 (1975)

    Google Scholar 

  • Elyakova, G.V.: Electron microscopic investigation of the formation of myoblasts in regenerating muscular tissue. Dokl. Akad. Nauk SSSR 202, 1196–1198 (1972) [in Russian]

    Google Scholar 

  • Gutmann, E., Hanzlíková, V.: Age changes in the neuromuscular system, p. 70. Bristol: Scientechnica Publishers, 1972

    Google Scholar 

  • Hay, E.D.: Cellular basis of regeneration. In: Concepts of development (J. Lash and J.R. Whittaker, eds.). Connecticut: Sinaver Assoc., Inc. Stamford, 1974

    Google Scholar 

  • Hay, E.D., Doyle, C.M.: Absence of reserve cells (satellite cells) in nonregenerating muscle of mature newt limbs. Anat. Rec. 175, 339–340 (1973)

    Google Scholar 

  • Karnovsky, M.J.: A formaldehyde-glutaraldehyde fixative of high osmolality for use in electron microscopy. J. Cell Biol. 27, 137 (1965)

    Google Scholar 

  • Kelly, A.M.: Satellite cells in the soleus and extensor digitorum longus muscles of rats. J. Cell Biol. 67, 206a (1975)

  • Mastaglia, F.L., Dawkins, R.L., Papadimitrou: Morphological changes in skeletal muscle after transplantation. A light- and electron-microscopic study of the initial phases of degeneration and regeneration. J. Neurol. Sci. 25, 227–247 (1975)

    Google Scholar 

  • Mauro, A.: Satellite cells of skeletal muscle fibers. J. biophys. biochem. Cytol. 9, 493–495 (1961)

    Google Scholar 

  • Moss, F.P., Leblond, C.P.: Satellite cells as the source of nuclei in muscles of growing rats. Anat. Rec. 170, 421–436 (1971)

    Google Scholar 

  • Muir, A.R.: The structure and distribution of satellite cells. In: Regeneration of striated muscle, and myogenesis (A. Mauro, S.A. Shafiq and A.T. Milhorat, eds.), pp. 91–100. Amsterdam: Elsevier, Excerpta Medica 1970

    Google Scholar 

  • Ontell, M.: Muscle satellite cells: A validated technique for light microscopic identification and a quantitative study of changes in their population following denervation. Anat. Rec. 178, 211–228 (1974)

    Google Scholar 

  • Ontell, M.: Evidence for myoblastic potential of satellite cells in denervated muscle. Cell Tiss. Res. 160, 345–353 (1975)

    Google Scholar 

  • Popiela, H.: Muscle satellite cells in urodele amphibians: Facilitated identification of satellite cells using Ruthenium red staining. J. exp. Zool. 198, 57–64 (1976)

    Google Scholar 

  • Reznik, M.: Origin of myoblasts during skeletal muscle regeneration. Lab. Invest. 20, 353–363 (1969)

    Google Scholar 

  • Reznik, M.: Origin of the myogenic cell in the adult striated muscle of mammals. A review and a hypothesis. Differentiation 7, 65–73 (1976)

    Google Scholar 

  • Schiaffmo, S., Bormioli, P., Aloisi, M.: The fate of newly formed satellite cells during compensatory muscle hypertrophy. Virchows Arch. Abt. B 21, 113–118 (1976)

    Google Scholar 

  • Schmalbruch, H., Hellhammer, U.: The number of satellite cells in normal muscle. Anat. Rec. 185, 279–288 (1976)

    Google Scholar 

  • Schultz, E.: A quantitative study of the satellite cell population in postnatal mouse lumbrical muscle. Anat. Rec. 180, 589–596 (1974)

    Google Scholar 

  • Schultz, E.: Fine structure of satellite cells in growing skeletal muscle. Amer. J. Anat. 147, 49–70 (1976)

    Google Scholar 

  • Snow, M.H.: Myogenic cell formation in regenerating rat skeletal muscle injured by mincing. I. A fine structural study. Anat. Rec. 188, 181–200 (1977)

    Google Scholar 

  • Snow, M.H.: Myogenic cell formation in regenerating rat skeletal muscle injured by mincing. II. An autoradiographic study. Anat. Rec. 188, 200–218 (1977)

    Google Scholar 

  • Venable, J.H.: Morphology of the cells of normal, testosterone-deprived and testosterone-stimulated levator ani muscles. Amer. J. Anat. 119, 271–302 (1966)

    Google Scholar 

  • Wakayama, Y.: Electron microscopic study on the satellite cell in the muscle of Duchenne muscular dystrophy. J. Neuropath, exp. Neurol. 35, 532–540 (1976)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This study was supported by NIH grant No. 5 S01-RR05356-13

Appreciation is extended to Ms. Amy Erisman and Mr. Monroe Sprague for their excellent technical assistance on this project

Rights and permissions

Reprints and permissions

About this article

Cite this article

Snow, M.H. The effects of aging on satellite cells in skeletal muscles of mice and rats. Cell Tissue Res. 185, 399–408 (1977). https://doi.org/10.1007/BF00220299

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00220299

Key words

Navigation