Skip to main content

Isolation of Satellite Cells from Single Muscle Fibers from Young, Aged, or Dystrophic Muscles

  • Protocol
  • First Online:
Progenitor Cells

Part of the book series: Methods in Molecular Biology ((MIMB,volume 916))

Abstract

Skeletal muscle contains an identified resident stem cell population called the satellite cells. This cell is responsible for the majority of the postnatal growth and regenerative potential of skeletal muscle. Other cells do contribute to skeletal muscle regeneration and in cultures of minced whole muscle these cells are cultured along with the satellite cells and it is impossible to dissect out their contribution compared to the satellite cells. Therefore, a method to culture pure satellite cells has been developed to study the signaling pathways that control their proliferation and differentiation. In our studies into the role of the resident myogenic stem cells in regeneration, myopathic conditions, and aging, we have optimized the established techniques that already exist to isolate pure satellite cell cultures from single muscle fibers. We have successfully isolated satellite cells from young adults through to 24-month-old muscles and obtained populations of cells that we are studying for the signaling events that regulate their proliferative potential.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mauro A (1961) Satellite cell of skeletal muscle fibers. J Biophys Biochem Cytol 9:493–495

    Article  PubMed  CAS  Google Scholar 

  2. Schultz E, Gibson MC, Champion T (1978) Satellite cells are mitotically quiescent in mature mouse muscle: an EM and radioautographic study. J Exp Zool 206:451–456

    Article  PubMed  CAS  Google Scholar 

  3. Cossu G, Biressi S (2005) Satellite cells, myoblasts and other occasional myogenic progenitors: possible origin, phenotypic features and role in muscle regeneration. Semin Cell Dev Biol 16:623–631

    Article  PubMed  CAS  Google Scholar 

  4. Gopinath SD, Rando TA (2008) Stem cell review series: aging of the skeletal muscle stem cell niche. Aging Cell 7:590–598

    Article  PubMed  CAS  Google Scholar 

  5. Brooks NE, Schuenke MD, Hikida RS (2009) No change in skeletal muscle satellite cells in young and aging rat soleus muscle. J Physiol Sci 59:465–471

    Article  PubMed  CAS  Google Scholar 

  6. Barani AE, Durieux AC, Sabido O, Freyssenet D (2003) Age-related changes in the mitotic and metabolic characteristics of muscle-derived cells. J Appl Physiol 95:2089–2098

    PubMed  Google Scholar 

  7. Beccafico S, Puglielli C, Pietrangelo T, Bellomo R, Fano G, Fulle S (2007) Age-dependent effects on functional aspects in human satellite cells. Ann N Y Acad Sci 1100:345–352

    Article  PubMed  CAS  Google Scholar 

  8. Brack AS, Conboy MJ, Roy S, Lee M, Kuo CJ, Keller C, Rando TA (2007) Increased Wnt signaling during aging alters muscle stem cell fate and increases fibrosis. Science 317:807–810

    Article  PubMed  CAS  Google Scholar 

  9. Carlson ME, Suetta C, Conboy MJ, Aagaard P, Mackey A, Kjaer M, Conboy I (2009) Molecular aging and rejuvenation of human muscle stem cells. EMBO Mol Med 1:381–391

    Article  PubMed  CAS  Google Scholar 

  10. Conboy IM, Rando TA (2005) Aging, stem cells and tissue regeneration: lessons from muscle. Cell Cycle 4:407–410

    Article  PubMed  CAS  Google Scholar 

  11. Day K, Shefer G, Shearer A, Yablonka-Reuveni Z (2010) The depletion of skeletal muscle satellite cells with age is concomitant with reduced capacity of single progenitors to produce reserve progeny. Dev Biol 340:330–343

    Article  PubMed  CAS  Google Scholar 

  12. Vertino AM, Taylor-Jones JM, Longo KA, Bearden ED, Lane TF, McGehee RE Jr, Macdougald OA, Peterson CA (2005) Wnt10b deficiency promotes coexpression of myogenic and adipogenic programs in myoblasts. Mol Biol Cell 16:2039–2048

    Article  PubMed  CAS  Google Scholar 

  13. Blau HM, Webster C, Pavlath GK, Chiu CP (1985) Evidence for defective myoblasts in Duchenne muscular dystrophy. Adv Exp Med Biol 182:85–110

    PubMed  CAS  Google Scholar 

  14. Blau HM, Webster C, Pavlath GK (1983) Defective myoblasts identified in Duchenne muscular dystrophy. Proc Natl Acad Sci USA 80:4856–4860

    Article  PubMed  CAS  Google Scholar 

  15. Irintchev A, Zweyer M, Wernig A (1997) Impaired functional and structural recovery after muscle injury in dystrophic mdx mice. Neuromuscul Disord 7:117–125

    Article  PubMed  CAS  Google Scholar 

  16. Schuierer MM, Mann CJ, Bildsoe H, Huxley C, Hughes SM (2005) Analyses of the differentiation potential of satellite cells from myoD−/−, mdx, and PMP22 C22 mice. BMC Musculoskelet Disord 6:15

    Article  PubMed  Google Scholar 

  17. Yablonka-Reuveni Z, Anderson JE (2006) Satellite cells from dystrophic (mdx) mice display accelerated differentiation in primary cultures and in isolated myofibers. Dev Dyn 235:203–212

    Article  PubMed  CAS  Google Scholar 

  18. Seale P, Sabourin LA, Girgis-Gabardo A, Mansouri A, Gruss P, Rudnicki MA (2000) Pax7 is required for the specification of myogenic satellite cells. Cell 102:777–786

    Article  PubMed  CAS  Google Scholar 

  19. Oustanina S, Hause G, Braun T (2004) Pax7 directs postnatal renewal and propagation of myogenic satellite cells but not their specification. EMBO J 23:3430–3439

    Article  PubMed  CAS  Google Scholar 

  20. Boldrin L, Muntoni F, Morgan JE (2010) Are human and mouse satellite cells really the same? J Histochem Cytochem 58:941–955

    Article  PubMed  CAS  Google Scholar 

  21. Rando TA, Blau HM (1994) Primary mouse myoblast purification, characterization, and transplantation for cell-mediated gene therapy. J Cell Biol 125:1275–1287

    Article  PubMed  CAS  Google Scholar 

  22. Yaffe D, Saxel O (1977) Serial passaging and differentiation of myogenic cells isolated from dystrophic mouse muscle. Nature 270:725–727

    Article  PubMed  CAS  Google Scholar 

  23. Rosenblatt JD, Lunt AI, Parry DJ, Partridge TA (1995) Culturing satellite cells from living single muscle fiber explants. In Vitro Cell Dev Biol Anim 31:773–779

    Article  PubMed  CAS  Google Scholar 

  24. Bekoff A, Betz W (1977) Properties of isolated adult rat muscle fibres maintained in tissue culture. J Physiol 271:537–547

    PubMed  CAS  Google Scholar 

  25. Bischoff R (1986) Proliferation of muscle satellite cells on intact myofibers in culture. Dev Biol 115:129–139

    Article  PubMed  CAS  Google Scholar 

  26. Rosenblatt JD, Parry DJ, Partridge TA (1996) Phenotype of adult mouse muscle myoblasts reflects their fiber type of origin. Differentiation 60:39–45

    Article  PubMed  CAS  Google Scholar 

  27. Zammit PS (2008) All muscle satellite cells are equal, but are some more equal than others? J Cell Sci 121:2975–2982

    Article  PubMed  CAS  Google Scholar 

  28. Yablonka-Reuveni Z, Rivera AJ (1994) Temporal expression of regulatory and structural muscle proteins during myogenesis of satellite cells on isolated adult rat fibers. Dev Biol 164:588–603

    Article  PubMed  CAS  Google Scholar 

  29. Yamanouchi K, Hosoyama T, Murakami Y, Nishihara M (2007) Myogenic and adipogenic properties of goat skeletal muscle stem cells. J Reprod Dev 53:51–58

    Article  PubMed  CAS  Google Scholar 

  30. Bonavaud S, Agbulut O, D’Honneur G, Nizard R, Mouly V, Butler-Browne G (2002) Preparation of isolated human muscle fibers: a technical report. In Vitro Cell Dev Biol Anim 38:66–72

    Article  PubMed  Google Scholar 

  31. Wozniak AC, Pilipowicz O, Yablonka-Reuveni Z, Greenway S, Craven S, Scott E, Anderson JE (2003) C-Met expression and mechanical activation of satellite cells on cultured muscle fibers. J Histochem Cytochem 51:1437–1445

    Article  PubMed  CAS  Google Scholar 

  32. Wozniak AC, Anderson JE (2005) Single-fiber isolation and maintenance of satellite cell quiescence. Biochem Cell Biol 83:674–676

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the other lab members for their help and advice and encouragement especially Dr. X. Zhang. This work is supported by a studentship to V. Di Foggia from the Muscular Dystrophy Campaign.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lesley Robson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media New York

About this protocol

Cite this protocol

Di Foggia, V., Robson, L. (2012). Isolation of Satellite Cells from Single Muscle Fibers from Young, Aged, or Dystrophic Muscles. In: Mace, K., Braun, K. (eds) Progenitor Cells. Methods in Molecular Biology, vol 916. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-980-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-980-8_1

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61779-979-2

  • Online ISBN: 978-1-61779-980-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics