Skip to main content
Log in

The sarcoplasmic reticulum and associated plasma membrane of trunk muscle lamellae in Branchiostoma lanceolatum (Pallas)

A transmission and scanning electron microscopic study including freeze-fractures, direct replicas and X-ray microanalysis of calcium oxalate deposits

  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Summary

The trunk muscle lamellae of Amphioxus is made up of cross-striated lamellae about 1 μm thick. Transverse tubules are absent, but numerous subsarcolemmal vesicles are found in both tissue blocks and minced samples after aldehyde and osmium fixation, embedding and sectioning.

The vesicles contain a granular matrix, range in diameter from 30 to 200 nm and constitute about 3 to 6% of the muscle fibre volume. 8 out of 10 vesicles are found above the Z and I-bands. In the presence of oxalate, electron dense precipitates form within the vesicles. Energy-dispersive X-ray microanalysis reveals the presence of Calcium in these precipitates.

The area of the plasma membrane is about 2 μm2/μm3 muscle fibre volume. The corresponding area of sarcoplasmic membrane is ca. 1 μm2/μm3. About 20% of the plasma membrane is directly overlaid and coupled to the sarcoplasmic vesicles.

A thin surface coat is present all over the lamellae, but ruthenium red staining indicates that the coat is slightly concentrated above the sarcoplasmic vesicles.

Freeze-fracture replicas reveal tightly packed coarse granular material in the vesicular membrane and less concentrated and smaller particles in the plasma membrane. The latter particles are seen somewhat less commonly above the vesicles than on the rest of the plasma membrane. Likewise, direct replicas of lamella spread on glass slides and freeze-dried, reveal a distinct pattern in the surface coat or its underlying structures, corresponding to the Z and I-bands.

In the scanning electron microscope the general arrangement of the sarcoplasmic vesicles could be examined. In addition, numerous defects in the plasma- and vesicular membranes indicate a strong adhesion between the two.

It is concluded that the trunk muscle lamellae of Amphioxus have a sarcoplasmic reticulum consisting of subsarcolemmal vesicles with calcium sequestrating properties at Z and I-level. Further that the plasma membrane and its surface coat is probably specialized above the vesicles as compared to the rest of the surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Berrill, N.J., Sheldow, H.: The fine structure of the connections between muscle cells in ascidian tadpole larva. J. Cell Biol. 23, 664–669 (1964)

    Google Scholar 

  • Bertaud, W.S., Ryans, D.G., Simpson, F.O.: Freeze-etch studies on fish skeletal muscle. J. Cell Sci. 6, 537–557 (1970)

    Google Scholar 

  • Bone, Q., Flood, P.R., Mackie, G.O., Singla, C.L.:On the organization of the sarcotubular system in the caudal muscle cells of larvaceans (Tunicata). (In preparation 1977)

  • Bone, Q., Ryan, K.P.: The structure and innervation of the locomotor muscle of salps (Tunicata; Thaliacea). J. mar. Biol. Ass. U.K. 53, 873–883 (1973)

    Google Scholar 

  • Branton, D.: Freeze-etching studies of membrane structure. Phil. Trans. B 261, 133–138 (1971)

    Google Scholar 

  • Bullivant, S.: Freeze-etching and freeze-fracturing. In: Advanced techniques in biological electron microscopy (J.K. Koehler, ed.), pp. 67–112. Berlin-Heidelberg-New York: Springer 1973

    Google Scholar 

  • Cavey, M.J., Cloney, R.A.: The structure and differentiation of ascidian muscle. Differentiated caudal musculature of Distaplia occidentalis tadpoles. J. Morph. 138, 349–874 (1972)

    Google Scholar 

  • Chiarandini, D.J., Reuben, J.P., Brandt, P.W., Grundfest, H.: Effect of caffeine on crayfish muscle fibres. I. Activation of contraction and induction of Ca-spike electrogenesis. J. gen. Physiol. 55, 640–664 (1970)

    Google Scholar 

  • Costantin, L.L., Franzini-Armstrong, C., Podolsky, R.J.: Localization of calcium-accumulating structures in striated muscle fibers. Science 147, 158–160 (1965)

    Google Scholar 

  • De Meis, L., Hasselbach, W., Machado, R.D.: Characterization of calcium oxalate and calcium phosphate deposits in sarcoplasmic reticulum vesicles. J. Cell Biol. 62, 505–509 (1974)

    Google Scholar 

  • Diculescu, L, Popescu, L.M., Ionescu, N., Butucescu, N.: Ultrastructural study of calcium distribution in cardiac muscle cells. Z. Zellforsch. 121, 181–198 (1971)

    Google Scholar 

  • Ebashi, S.: Excitation contraction coupling. Ann Rev. Physiol. 38 (1976)

  • Ebashi, S., Endo, M., Ohtsuki, I.: Control of muscle contraction. Quart. Rev. Biophys. 2, 351–384 (1969)

    Google Scholar 

  • Flood, P.R.: The effect of different fixatives on mitochondrial ultrastructure in Amphioxus muscle (Abstract). J. Ultrastruct. Res. 18, 228 (1967)

    Google Scholar 

  • Flood, P.R.: Structure of the segmental trunk muscle in Amphioxus. With notes on the course and “endings” of the socalled ventral root fibres. Z. Zellforsch. 84, 389–314 (1968)

    Google Scholar 

  • Flood, P.R.: The sarcoplasmic reticulum of Amphioxus trunk muscle (Abstract). J. Ultrastruct. Res. 29, 569 (1969)

    Google Scholar 

  • Flood, P.R.: Dry-fracturing techniques for the study of soft internal biological tissues in the scanning electron microscope. In: Scanning electron microscopy, 1975 (O. Johari and I. Corvin, eds.), pp. 287–294. Chicago: IIT Res. Inst. 1975a

    Google Scholar 

  • Flood, P.R.: Fine structure of the notochord of Amphioxus. Symp. Zool. Soc. Lond. 36, 81–104 (1975b)

    Google Scholar 

  • Franzini-Armstrong, C.: Studies of the triad I. Structure of the junction in frog twitch fibres. J. Cell Biol. 47, 488–499 (1970)

    Google Scholar 

  • Franzini-Armstrong, C.: Membranous systems in muscle fibres. In: The structure and function of muscle (G.H., Bourne ed.) 2 ed., Vol.2, pp. 531–619. New York: Acad. Press 1973

    Google Scholar 

  • Franzini-Armstrong, C.: Freeze fracture of skeletal muscle from the tarantula spider. Structural differentiations of sarcoplasmic reticulum and transverse tubular system membranes. J. Cell Biol. 61, 501–513 (1974)

    Google Scholar 

  • Hagiwara, S., Henkart, M.P., Kidokoro, Y.: Excitation-contraction coupling in Amphioxus muscle cells. J. Physiol. (Lond.) 219, 233–251 (1971)

    Google Scholar 

  • Hagiwara, S., Kidokoro, Y.: Na and Ca component of action potential in Amphioxus muscle cells. J. Physiol. (Lond.) 219, 217–232 (1971)

    Google Scholar 

  • Hagiwara, S., Nakajima, S.: Differences in Na and Ca spikes as examined by application of tetrodotoxin, procain and manganese ions. J. gen. Physiol. 49, 793–806 (1966)

    Google Scholar 

  • Hagiwara, S., Takahashi, K., Junge, D.: Excitation-contraction coupling in a barnacle muscle fiber as examined with voltage clamp technique. J. gen. Physiol. 51, 157–175 (1968)

    Google Scholar 

  • Haksar, A., Maudsley, D.V., Péron, F.G., Bedigian, E.: Lanthanum, inhibition of ACTH-stimulated cyclic AMP and corticosterone synthesis in isolated rat adrenocortical cells. J. Cell Biol. 68, 142–153 (1976)

    Google Scholar 

  • Hall, T.A., Gupta, B.L.: Beam-induced loss of organic mass under electron microprobe conditions. J. Microscopy 100, 177–188 (1974)

    Google Scholar 

  • Hasselbach, W.: Relaxation and the sarcotubular calcium pump. Fed. Proc. 23, 909–912 (1964)

    Google Scholar 

  • Hellam, D.C., Podolsky, R.J.: The relation between calcium concentration and isometric force in skinned frog muscle fibers (Abstract). Fed. Proc. 25, 466 (1966)

    Google Scholar 

  • Helle, K.B., Lønning, S.: Sarcoplasmic reticulum in the portal vein heart and ventricle of the cyclostome Myxine glutinosa (L). J. Molec. Cell Cardiol. 5, 433–439 (1973)

    Google Scholar 

  • Heumann, H.-G.: Calciumakkumulierende Strukturen in einem glatten Wirbellosenmuskel. Protoplasma 67, 111–115 (1969)

    Google Scholar 

  • Heuser, J.E., Reese, T.S., Landis, D.M.D.: Functional changes in frog neuromuscular junctions studied with freeze fracture. J. Neurocytol. 3, 109–131 (1974)

    Google Scholar 

  • Ishikawa, H., Fukuda, Y., Yamada, E.: Freeze-replica observations on frog sartorius muscle. I. sarcolemmal specializations. J. Electron Microscopy 24, 97–107 (1975)

    Google Scholar 

  • Jewett, P.H., Sommer, J.H., Johnson, E.A.: Cardiac muscle: its ultrastructure in the finch and hummingbird with special reference to the sarcoplasmic reticulum. J. Cell Biol. 49, 50–65 (1971)

    Google Scholar 

  • Johnson, E.A., Sommer, J.R.: A strand of cardiac muscle: its ultrastructure and the electrophysiological implications of its geometry. J. Cell Biol. 33, 103–129 (1967)

    Google Scholar 

  • Karnovsky, M.J., Revel, J.P.: Hexagonal pattern in tight junctions as revealed by neutral lanthanum suspensions. J. Cell Biol. 31, 56A-57A (1966)

    Google Scholar 

  • Kelly, D.E.: The fine structure of skeletal muscle triad junctions. J. Ultrastruct. Res. 29, 37–49 (1969)

    Google Scholar 

  • Kidokoro, Y., Hagiwara, S., Henkart, M.P.: Electrical properties of obliquely striated muscle fibre membrane of Anodonta glochidium. J. comp. Physiol. 90, 321–338 (1974)

    Google Scholar 

  • Komnick, H.: Histochemische Calcium-Lokalisation in der Skelettmuskulatur des Frosches. Histochemie 18, 24–29 (1969)

    Google Scholar 

  • Kryvi, H.: On the presence of sarcoplasmic reticulum in obliquely striated muscles from Sabella penicillum (Polychaeta). J. submicr. Cytol. 5, 23–28 (1973)

    Google Scholar 

  • Legato, M.J., Langer, G.A.: The subcellular localization of calcium ion in mammalian myocardium. J. Cell Biol. 41, 401–423 (1969)

    Google Scholar 

  • Luft, J.H.: Ruthenium red and violet. I. Chemistry, purification, methods of use for electron microscopy and mechanism of action. Anat. Rec. 171, 347–368 (1971a)

    Google Scholar 

  • Luft, J.H.: Ruthenium red and violet. II. Fine structural localization in animal tissues. Anat. Rec. 171, 369–416 (1971b)

    Google Scholar 

  • Martinez-Paloma, A.: The surface coats of animals cells. Int. Rev. Cytol. 29, 29–75 (1970)

    Google Scholar 

  • McCallister, L.P., Hadek, R.: The localization of calcium in skeletal muscle: its distribution in muscles in which the caffeine-induced contracture was arrested. J. Ultrastruct. Res. 45, 59–81 (1973)

    Google Scholar 

  • McCallister, L.P., Mumaw, V.R., Munger, B.L.: Stereo ultrastructure of cardiac membrane systems in the rat heart. In: Scanning electron microscopy, 1974 (O. Johari and I. Crovin, eds.), pp. 712–719. Chicago: ITT Res. Inst. 1974

    Google Scholar 

  • Mill, P.J., Knapp, M.F.: The fine structure of obliquely striated body wall muscles in the earthworm, Lumbricus terrestris. Linn. J. Cell Sci. 7, 233–261 (1970)

    Google Scholar 

  • Moor, H.: Etching and related problems. In: Freeze-etching. Techniques and applications (E.L. Benedetti and P. Favard, eds.), pp. 21–26. Paris: Soc. Franc. Micr. Electronique 1973

    Google Scholar 

  • Myklebust, R., Dalen, H., Saetersdal, T.S.: A comparative study in the transmission electron microscope and scanning electron microscope of intracellular structures in sheep heart muscle cells. J. Microscopy 105, 57–65 (1975)

    Google Scholar 

  • Nakao, T.: An electron microscopic study of the neuromuscular junction in the myotomes of larval lamprey Lanpetra japonica. J. comp. Neurol. 165, 1–16 (1975)

    Google Scholar 

  • Niedergerke, R.: Movements of calcium in frog heart ventricles at rest and during contractures. J. Physiol. (Lond.) 167, 515–550 (1963a)

    Google Scholar 

  • Niedergerke, R.: Movements of Ca in beating ventricles of the frog heart. J. Physiol. (Lond.) 167, 551–580 (1963b)

    Google Scholar 

  • Orkand, R.K.: The relation between membrane potential and contraction in single crayfish muscle fibres. J. Physiol. (Lond.) 161, 143–158 (1962)

    Google Scholar 

  • Page, S.: Structure of the sarcoplasmic reticulum in vertebrate muscle. Brit. med. Bull. 24, 170–173 (1968)

    Google Scholar 

  • Peachey, L.D.: Structure of the longitudinal body muscles of Amphioxus. J. biophys. biochem. Cytol. 10, Suppl. 159–176 (1961)

    Google Scholar 

  • Peachey, L.D.: Structure of the sarcoplasmic reticulum and T-system of striated muscle. Excerpta Med. Internat. Congr. Ser. 87, 388–398 (1965)

    Google Scholar 

  • Pease, A.C., Jenden, D.J., Howell, J.N.: Calcium uptake in glycerol-extracted rabbit psoas muscle fibres. II Electron microscopic localization of uptake sites. J. cell comp. Physiol. 65, 141–145 (1965)

    Google Scholar 

  • Peters, A., Mackay, B.: The structure and innervation of the myotomes of the lamprey. J. Anat. (Lond.) 95, 575–585 (1961)

    Google Scholar 

  • Philips, E.B., Perdue, J.E.: Ultrastructural distribution of cell surface antigens in avian tumor virus-infected chick embryo fibroblasts. J. Cell Biol. 61, 743–756 (1974)

    Google Scholar 

  • Pinto da Silva, P., Branton, D.: Membrane splitting in freeze-etching. J. Cell Biol. 45, 598–605 (1970)

    Google Scholar 

  • Podolsky, R.J., Hall, T., Hatchett, S.L.: Identification of oxalate precipitates in striated muscle fibres. J. Cell Biol. 44, 699–702 (1970)

    Google Scholar 

  • Politoff, A.L., Rose, S., Pappas, G.D.: The calcium binding sites of synaptic vesicles of the frog sartorius neuromuscular junction. J. Cell Biol. 61, 818–823 (1974)

    Google Scholar 

  • Portzehl, H., Caldwell, P.C., Rüegg, J.C.: The dependence of contraction and relaxation of muscle fibres from the crab Maia squinado on the internal concentration of free calcium ions. Biochim. biophys. Acta (Amst.) 79, 581–591 (1964)

    Google Scholar 

  • Prosser, C.L.: Comparative animal physiology, 3 ed. 966 pp. Philadelphia: Saunders 1973

    Google Scholar 

  • Pucci-Minafra, I.: Ultrastructure of muscle cells in Ciona intestinalis tadpoles. A. Embryol. Morph. Exp. 8, 289–305 (1965)

    Google Scholar 

  • Rash, J.E., Ellisman, M.H.: Studies of excitable membranes. I. Macromolecular specialization of the neuromuscular junction and the nonjunctional sarcolemma. J. Cell Biol. 63, 567–586 (1974)

    Google Scholar 

  • Rayns, D.G., Simpson, F.O., Bertaud, W.S.: Surface features of striated muscle. I. Guinea pig cardiac muscle. J. Cell Sci. 3, 467–474 (1968)

    Google Scholar 

  • Revel, J.P.: The sarcoplasmic reticulum of the bat cricothyroid muscle. J. Cell Biol. 12, 571–588 (1962)

    Google Scholar 

  • Reynolds, E.S.: The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J. Cell Biol. 17, 208–211 (1963)

    Google Scholar 

  • Rosenblith, J.Z., Ukena, T.E., Yin, H.H., Berlin, R.D., Karnovsky, M.J.: A comparative evaluation of the distribution of concanavalin A-binding sites on the surface of normal, virally transformed and protease-triated fibroblasts. Proc. nat. Acad. Sci. (Wash.) 70, 1625–1629 (1973)

    Google Scholar 

  • Rosenbluth, J.: Ultrastructure of dyads in muscle fibers of Ascaris lumbricoides. J. Cell Biol. 42, 817–825 (1969)

    Google Scholar 

  • Saetersdal, T.S., Myklebust, R., Berg Justesen, N.-P.: Ultrastructural localization of calcium in the pigeon papillary muscle as demonstrated by cytochemical studies and X-ray microanalysis. Cell Tiss. Res. 155, 57–74 (1974)

    Google Scholar 

  • Sandow, A.: Skeletal muscle. Ann. Rev. Physiol. 32, 87–138 (1970)

    Google Scholar 

  • Sanger, J.W.: Sarcoplasmic reticulum in the cross-striated adductor muscle of the bay scallop Aequipecten irridians. Z. Zellforsch. 118, 156–161 (1971)

    Google Scholar 

  • Sanger, J.W., McCann, F.V.: Ultrastructure of the myocardium of the moth, Hyalophora cecropia. J. Insect Physiol. 14, 1105–1111 (1968)

    Google Scholar 

  • Schiaffino, S., Nunzi, M.G., Burighel, P.: T-system in ascidian muscle: organization of the sarcotubular system in the caudal muscle cells of Botryllus schlosseri tadpole larvae. Tiss. Cell. 8, 101–110 (1976)

    Google Scholar 

  • Schmalbruch, H.: The sarcolemma of skeletal muscle fibres as demonstrated by a replica technique. Cell Tiss. Res. 150, 377–387 (1974)

    Google Scholar 

  • Somlyo, A.D.: Excitation-contraction coupling in vertebrate smooth muscle: Correlation of ultrastructure with function. Physiologist 15, 338–348 (1972)

    Google Scholar 

  • Spray, T.L., Waugh, R.A., Sommer, J.R.: Peripheral couplings in adult vertebrate skeletal muscle. Anatomical observations and functional implications. J. Cell Biol. 62, 223–227 (1974)

    Google Scholar 

  • Steere, R.L.: Freeze-etching techniques and applications. In: Freeze-etching. Techniques and application (E.L. Benedetti and P. Favard, eds.), pp. 233–255. Paris: Soc. Franc. Micr. Electronique 1973

    Google Scholar 

  • Stolinsky, C., Breathnach, A.S.: Freeze-fracture replication of biological tissues. Techniques, interpretation and Applications. 173 pp. London: Acad. Press 1975

    Google Scholar 

  • Sybers, H.D., Ashraf, M.: Preparation of cardiac muscle for SEM. In: Scanning electron microscopy, 1973 (O. Johari and I. Corvin, eds.), pp. 341. Chicago: ITT Res. Inst. 1973

    Google Scholar 

  • Teräväinen, H.: Anatomical and physiological studies on muscles of Lamprey. J. Neurophysiol. 34, 954–973 (1971)

    Google Scholar 

  • Ukena, T.E., Borysenko, J.Z., Karnovsky, M.J., Berlin, R.D.: Effects of colchicine, cytochalasin B and 2-deoxyglucose on the topographical organization of surface-bound concavalin A in normal and transformed fibroblasts. J. Cell Biol. 61, 70–82 (1974)

    Google Scholar 

  • Vale, M.G.P., Carvalho, A.P.: Effects of ruthenium red on Ca2+ uptake and ATP-ase of sarcoplasmic reticulum of rabbit skeletal muscle. Biochim. biophys. Acta (Amst.) 325, 29–37 (1973)

    Google Scholar 

  • Van Steveninck, R.F.M., Van Steveninck, M.E., Hall, T.A., Peters, P.D.: A chlorine-free embedding medium for use in X-ray analytical electron microscope localization of chloride in biological tissues. Histochemie 38, 173–180 (1974)

    Google Scholar 

  • Watson, M.L.W.: Staining of tissue sections for electron microscopy with heavy metals. J. biophys. biochem. Cytol. 4, 475–478 (1958)

    Google Scholar 

  • Weibel, E.R., Kistler, G.S., Scherle, W.F.: Practical stereological methods for morphometric cytology. J. Cell Biol. 30, 23–38 (1966)

    Google Scholar 

  • Weiss, G.B.: Cellular pharmacology of lanthanum. Ann. Rev. Pharmacol. 14, 343–354 (1974)

    Google Scholar 

  • Yeh, B.K.: Localization of calcium antimonate in the atrial and ventricular fibres of the cat heart. J. Mol. Cell Card. 5, 351–358 (1973)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

I wish to express my sincere gratitude to the directors and staffs at Biologische Anstalt, Helgoland, Laboratoire Arago, Banyuls s. Mer and The Marine Laboratory, Plymouth, for research facilities and supply of material. The staffs at the JEOL application laboratories in London and Paris are acknowledged for their expert assistance with X-ray microanalyses. Further I thank Miss K. Weltzin for type-writing the manuscript, Mr. E.S. Erichsen for skillful preparative work. Mr. R. Haakonsen and Mr. R. Jensen for all photographic work, and Mr. H. Knutsen and Mr. J. Røli for keeping the electron microscopes and the freeze-etching device in excellent working condition. The financial support of the Norwegian Research Council for Science and the Humanities (Grant no. C. 21.30-8) is appreciated

Rights and permissions

Reprints and permissions

About this article

Cite this article

Flood, P.R. The sarcoplasmic reticulum and associated plasma membrane of trunk muscle lamellae in Branchiostoma lanceolatum (Pallas). Cell Tissue Res. 181, 169–196 (1977). https://doi.org/10.1007/BF00219979

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00219979

Key words

Navigation