Skip to main content
Log in

Calcium- and voltage-dependence of nematocyst discharge in Hydra vulgaris

  • Original Paper
  • Published:
Journal of Comparative Physiology A Aims and scope Submit manuscript

Abstract

In Hydra vulgaris, discharge of stenotele nematocysts was induced by contact with prey, electrical stimuli, or increase in the external potassium concentration. In each case 10-4 M calcium was required in the culture medium. The results indicated a voltage- and calcium-dependent mechanism different from mechano- or chemoreception allowing calcium influx from the external medium. A threshold for activation was suggested by the steep increase of the rate of electrically induced discharge in external fields of 3.5 kV/m. Although organic antagonists for vertebrate calcium channels were ineffective in blocking the calcium-induced nematocyst discharge, inorganic divalent and trivalent cations competitively inhibited the process, with a sequence (Co2+ < Ni2+ < Cd2+ < La3+ < Gd3+) similar to that seen for antagonism of calcium influx through voltage-dependent channels. Magnesium, an intracellular calcium antagonist, decreased nematocyst discharge, while strontium replacing calcium supported the discharge at a lowered rate. It is concluded that in the nematocyte a voltage-activated influx of calcium through apical ion channels initiates the discharge of the nematocyst in an exocytotic process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aerne BL, Stidwell RP, Tardent P (1991) Nematocyst discharge in Hydra does not require the presence of nerve cells. J Exp Zool 258: 137–141

    Google Scholar 

  • Anderson PAV, McKay, MC (1987) The electrophysiology of cnidocytes. J Exp Biol 133: 215–230

    Google Scholar 

  • Augustine G, Neher E (1992) Calcium requirements for secretion in bovine chromaffin cells. J Physiol (Lond) 450: 247–271

    Google Scholar 

  • Blanquet R (1970) Ionic effects on discharge of the isolated and in situ nematocysts of the sea anemone, Aiptasia pallida: A possible role of calcium. Comp Biochem Physiol 35: 451–461

    Google Scholar 

  • Brinkmann M, Thurm U (1993) Mechanoreceptive properties of hydrozoan nematocytes in situ. In: Elsner N, Heisenberg M (eds) Gen — Gehirn — Verhalten. Proc 21st Göttingen Neurobiol Conf. Thieme, Stuttgart New York, # 155

    Google Scholar 

  • Campbell RD (1989) Taxonomy of the European Hydra (Cnidaria, Hydrozoa). A reexamination of its history with emphasis on the species H. vulgaris (Pallas), H. attenuata (Pallas) and H. circumtincta (Schulze). Zool J Linn Soc 95: 219–244

    Google Scholar 

  • Docherty RJ (1988) Gadolinium selectively blocks a component of calcium current in rodent neuroblastoma x glioma hybrid (NG108–15) cells. J Physiol (Lond) 398: 33–47

    Google Scholar 

  • Edmonds B, Klein M, Dale N, Kandel ER (1990) Contributions of two types of calcium channels to synaptic transmission and plasticity. Science 250: 1142–1144

    Google Scholar 

  • Gillis KD, Misler S (1993) Enhancers of cytosolic cAMP augment depolarization-induced exocytosis from pancreatic B-cells -evidence for effects distal to Ca2+ entry. Pflügers Arch 424: 195–197

    Google Scholar 

  • Gitter AH, Golz R (1994) Cnidarian nematocyst discharge: fast, voltage- and Ca2+-dependent exocytosis of a very large vesicle. In: Eisner N, Breer H (eds) Sensorische Transduktion. Proc 22st Göttingen Neurobiol Conf. Thieme, Stuttgart New York (in press)

    Google Scholar 

  • Gitter AH, Thurm U (1993a) Inorganic, but not organic calcium channel blockers inhibit nematocyte discharge in Hydra vulgaris. Eur J Cell Biol 60, Suppl. 37: 101

    Google Scholar 

  • Gitter AH, Thurm U (1993b) Starvation increases the electrically induced exocytosis of nematocysts in Hydra vulgaris. In: Elsner N, Heisenberg M (eds) Gen — Gehirn — Verhalten. Proc 21st Göttingen Neurobiol Conf. Thieme, Stuttgart New York, #154

    Google Scholar 

  • Gitter AH, Oliver D, Thurm U (1993) Streptomycin inhibits nematocyte discharge in Hydra vulgaris by blockage of mechansensitivity. Naturwissenschaften 80: 273–276

    Google Scholar 

  • Golz R, Thurm U (1990) Cnidocil regeneration in nematocytes of Hydra. Protoplasma 155: 95–105

    Google Scholar 

  • Haynes DH, Heuser JE, Papahadjopoulos D, Parsegian VA, Whittaker VP (1977) How calcium could trigger vesicle contact. Neurosci Res Prog Bull 15 (No. 4): 628–635

    Google Scholar 

  • Holstein T, Tardent P (1984) An ultrahigh-speed analysis of exocytosis: nematocyst discharge. Science 223: 830–833

    Google Scholar 

  • Jones CS (1947) The control and discharge of nematocysts in Hydra. J Exp Zool 105: 25–60

    Google Scholar 

  • Katz B, Miledi R (1967) The timing of calcium action during neuromuscular transmission. J Physiol (Lond) 189: 535–544

    Google Scholar 

  • Lansman J, Haynes DH (1975) Kinetics of a Ca2+-triggered membrane aggregation reaction of phospholipid membranes. Biochim Biophys Acta 394: 335–347

    Google Scholar 

  • Lawonn P, Thurm U (1992) The chemical sensitivity of nematocytes of Hydra vulgaris. In: Elsner N, Richter D (eds) Rhythmogenese in Neuronen und Netzwerken. Proc 20th Göttingen Neurobiol Conf. Thieme, Stuttgart New York, p 557

    Google Scholar 

  • Lenhoff HM (1983) Culturing large numbers of Hydra. In: Lenhoff HM (ed) Hydra: Research methods. Plenum, New York, pp 53–62

    Google Scholar 

  • Lenhoff HM, Bovaird J (1959) Requirement of bound calcium for the action of surface chemoreceptors. Science 130: 1474–1476

    Google Scholar 

  • Llinas RR, Steinberg IZ (1977) The place of a calcium hypothesis in synaptic transmission. Neurosci Res Prog Bull 15 (No 4): 565–574

    Google Scholar 

  • Lubbock R, Amos WB (1981) Removal of bound calcium from nematocyst contents causes discharge. Nature 290: 500–501

    Google Scholar 

  • Mariscal RN (1974) Nematocysts. In: Muscatine L, Lenhoff HM (eds) Coelenterate biology: Reviews and new perspectives. Academic Press, New York San Francisco London, pp 129–178

    Google Scholar 

  • McKay MC, Anderson PAV (1988) Preparation and properties of cnidocytes from the sea anemone Anthopleura elegantissima. Biol Bull Mar Biol Lab, Woods Hole 174: 47–53

    Google Scholar 

  • Miller R (1987) Multiple calcium channels and neuronal function. Science 235: 46–52

    Google Scholar 

  • Mogami Y, Pernberg sr. J, Machemer H (1990) Messenger role of calcium in ciliary electromotor coupling: a reassessment. Cell Calcium 11: 665–673

    Google Scholar 

  • Parnas H, Dudel J, Parnas I (1986) Neurotransmitter release and its facilitation in crayfish. VII. Another voltage dependent process beside Ca entry controls the time course of phasic release. Pflügers Arch 406: 121–130

    Google Scholar 

  • Salleo A, LaSpada G, Denaro MG, Falzea G (1988) Dynamics of release of free calcium during the discharge of holotrichous isorhiza of nematocysts of Pelagia noctiluca. In: Hessinger DA, Lenhoff HM (eds) The biology of nematocysts. Academic Press, San Diego, pp 551–565

    Google Scholar 

  • Santoro G, Salleo A (1991) The discharge of in situ nematocysts of the acontia of Aiptasia mutabilis is a Ca2+-induced response. J Exp Biol 156: 173–185

    Google Scholar 

  • Skaer RJ (1973) The secretion and development of nematocysts in a siphonophore. J Cell Sci 13: 371–393

    Google Scholar 

  • Smith S, Oshida J, Bode H (1974) Inhibition of nematocyst discharge in Hydra fed to repletion. Biol Bull 147: 186–202

    Google Scholar 

  • Tardent P (1988) History and current state of knowledge concerning the discharge of cnidae. In: Hessinger DA, Lenhoff HM (eds) The biology of nematocysts. Academic Press, San Diego, pp 309–332

    Google Scholar 

  • Thomas P, Almers W (1992) Exocytosis and its control at the synapse. Curr Opinion Neurobiol 2: 308–311

    Google Scholar 

  • Thurm U, Lawonn P (1990) Die sensorischen Eigenschaften des Cnidocil-Apparates als Grundlage des Beutefangs von Hydra attenuata. Verh Dtsch Zool Ges 83: 431

    Google Scholar 

  • Tsien RW, Lipscombe D, Madison DV, Bley KR, Fox AP (1988) Multiple types of neuronal calcium channels and their selective modulation. Trends Neurosci 11: 431–438

    Google Scholar 

  • Watson GM, Hessinger DA (1989) Cnidocyte mechanoreceptors are tuned to the movements of swimming prey by chemoreceptors. Science 243: 1589–1591

    Google Scholar 

  • Weber J, Klug M, Tardent P (1988) Chemistry of Hydra nematocysts. In: Hessinger DA, Lenhoff HM (eds) The biology of nematocysts. Academic Press, San Diego, pp 427–444

    Google Scholar 

  • Weber J (1989) Nematocysts (stinging capsules of Cnidaria) as Donnan-potential-dominated osmotic systems. Eur J Biochem 184: 465–476

    Google Scholar 

  • Wood RL (1988) Survey of the ultrastructure of cnidocytes. In: Hessinger DA, Lenhoff HM (eds) The biology of nematocysts. Academic Press, San Diego, pp 25–40

    Google Scholar 

  • Yanagita TM (1973) The ‘cnidoblast’ as an excitable system. Publ Seto Mar Biol Lab 20: 675–693

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gitter, A.H., Oliver, D. & Thurm, U. Calcium- and voltage-dependence of nematocyst discharge in Hydra vulgaris . J Comp Physiol A 175, 115–122 (1994). https://doi.org/10.1007/BF00217442

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00217442

Key words

Navigation