Skip to main content
Log in

Energetic irrelevance of aerobiosis for S. cerevisiae growing on sugars

  • General Articles
  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Summary

The net benefit that Saccharomyces cerevisiae obtains from aerobiosis as compared to anaerobiosis has been studied. For this purpose yeasts with different respiratory capacities have been obtained by growing them in batch cultures on different substrates. Even with sugars with low catabolite repression effect, as is the case of galactose, aerobiosis increased the growth rate and the growth yield by less than two-fold. These variations, which are much lower than the expected considering the actual oxygen utilization, indicate that either the amount of ATP produced in respiration is much lower than the theoretically expected or a much greater expenditure of ATP occurs in aerobic than in anaerobic growth. The results show that S. cerevisiae obtains only a slight benefit from aerobiosis when growing on sugars at the relatively high concentration prevailing in its natural habitats.

The inhibition of sugar consumption rate by aerobiosis (Pasteur effect) has also been studied, Pasteur effect was almost unnoticeable during growth on any tested sugar and very low during ammonia starvation. These results contrast with the general belief that Pasteur effect is a quantitatively important phenomenon in yeast. It is concluded that the relevant observations of Louis Pasteur have little relationship with the phenomenon that bears his name.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Payne, W., 1970. In Ann. Rev. Microbiol. 24, 17–51.

    Google Scholar 

  2. Stouthamer, A. H. and Bettenhaussen, C. W., 1973. Biochim. Biophys. Acta. 301, 53–70.

    Google Scholar 

  3. Polakis, E. S., Bartley, W., and Meek, G. A., 1965. Biochem. J. 97, 298–302.

    Google Scholar 

  4. Lagunas, R., 1976. Biochim. Biophys. Acta. 440, 661–674.

    Google Scholar 

  5. Jayaraman, J., Cotman, C., Mahler, H. R., Sharp, C. V., 1966. Arch. Biochem. Biophys. 116, 224–251.

    Google Scholar 

  6. Umbreit, W. W., Burris, R. H. and Stauffer, J. F., 1957. Manometric Techniques, 3rd. ed. Burgess Publishing Co, Minneapolis.

    Google Scholar 

  7. Bergmeyer, H. U., 1974. Methods of Enzymic Analysis, 2nd ed., Academic Press, New York.

    Google Scholar 

  8. Roe, J. H., 1955. J. Biol. Chem. 212, 335–343.

    Google Scholar 

  9. Lagunas, R. and Gancedo, J. M., 1973. Eur. J. Biochem. 37, 90–94.

    Google Scholar 

  10. Gancedo, J. M. and Lagunas, R., 1973. Plant Sci. Letters, 1, 193–200.

    Google Scholar 

  11. Walkil, S. J. and Barnes, E. M., 1971. In Comprehensive Biochemistry (Florkin, M., Stotz, E. H., eds.) vol 18S, pp. 57–104. American Elsevier Publishing Co. New York.

  12. Grylls, F. M. S., 1961. In Biochemist's Handbook (Long C., ed.) pp. 1050–1053. E. & F. N. Spon, London.

  13. Sanedi, D. R. and Jacobs, E. E., 1967. In Methods in Enzymology (Estabrook, R. W., Pullman, M. E. eds.), vol X, pp. 48–67. Academic Press, New York.

  14. Mackler, B. and Haynes, D., 1973. Biochim. Biophys. Acta. 292, 88–91.

    Google Scholar 

  15. Ohnishi, T., 1973. Biochem. Biophys. Res. Commun. 41. 344–352.

    Google Scholar 

  16. von Meyenburg, K., 1969. In Continuous cultivation of microorganism (Malék, L, Beran, K., Sencl, Z., Munk, V., Ricica, J., Smrčková, H., eds.) pp. 129–146. Academic Press, London.

  17. Neijssel, O. M. and Tempest, D. W., 1976. Arch. Microbiol. 110, 305–311.

    Google Scholar 

  18. Rogers, P. S. and Stewart, P. R., 1974. Arch. Microbiol, 99, 25–47.

    Google Scholar 

  19. Lynen, F., Hartmann, G., Netter, K. F. and Schuegraf, A., 1959. In Ciba Foundation Symposium on the Regulation of Cell Metabolism. (Wolstenholme, C. E. W., O'Connor, C. M., eds.), pp. 256–273, J. A. Churchill Ltd, London.

  20. Holzer, H., 1961. In Cold Spring Harbor Symposium on Quant. Biol. 26, 277–288.

    Google Scholar 

  21. Fiechter, A., Schatzmann, H., Rathjen, F. G. and Ono, T., 1977. In Euchem Conference on Metabolic Reactions in the Yeast Cell in Anaerobic and Aerobic Conditions, pp. 17–20. Helsinki.

  22. Krebs, H. A., 1972. In Assays in Biochemistry (Campbell, P. N., Dickens, F., eds.), Vol 8, pp. 1–35, Academic Press, New York.

  23. Ramaiah, A., 1974. In Current Topics Cell. Reg. (Horecker, B. L., Stadtman, E. H., eds), Vol 8, pp. 297–245. Academic Press, New York.

  24. Racker, E., 1974. Mol. Cell. Biochem. 5, 17–23.

    Google Scholar 

  25. Sols, A., 1976. In Reflections in Biochemistry (Kornberg, A. Horecker, B. L., Cornudella, L. and Oró, J., eds.), pp., 199–206. Pergamon Press, London.

  26. Tejwani, G. A., 1978. TIBS 3, 30–33.

    Google Scholar 

  27. Pasteur, L. 1861. Comp. Rend. Acad. Sci. 52, 1260–1264.

    Google Scholar 

  28. Hunter, K. and Rose, A. H., 1970. In The Yeast, (Rose, A. H., Harrison, J. S., eds.), Vol 2, pp. 211–270. Academic Press. New York.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lagunas, R. Energetic irrelevance of aerobiosis for S. cerevisiae growing on sugars. Mol Cell Biochem 27, 139–146 (1979). https://doi.org/10.1007/BF00215362

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00215362

Keywords

Navigation