Skip to main content
Log in

Layer V pyramidal cells in the adult human cingulate cortex

A quantitative Golgi-study

  • Published:
Anatomy and Embryology Aims and scope Submit manuscript

Abstract

The anterior and posterior parts of the human cingulate cortex differ in their absolute number of neurons per unit volume, with fewer neurons in the anterior part. To test the hypothesis that lower absolute number and packing density of neurons in the anterior cingulate cortex are associated with an increased complexity in the neuropil compartment, dendritic arborizations of layer V neurons in both cingulate parts were analyzed in a Golgi study. Results show that these neurons in the anterior cingulate cortex have more primary and secondary basal dendrites than those in the posterior cingulate cortex. This establishes an association of a higher complexity of the dendritic arborization in the anterior cingulate cortex with a lower cell number per unit volume and larger neuropil compartment. The significant lower degree of dendritic arborization in the posterior cingulate cortex is accompanied by a higher cell packing density. These structural differences are associated with functional differences between the two parts of the human cingulate cortex.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Armstrong E, Parker B (1986) A new Golgi method for adult human brains. J Neurosci Methods 17:247–254

    Google Scholar 

  • Baleydier C, Mauguier F (1980) The duality of the cingulate gyrus in monkey. Brain 103:525–554

    Google Scholar 

  • Baleydier C, Mauguier F (1987) Network organization of the connectivity between parietal area 7, posterior cingulate cortex and medial pulvinar nucleus: a double fluorescent tracer study in monkey. Exp Brain Res 66:385–393

    Google Scholar 

  • Berry M, Hollingworth T, Flinn RM, Andersen EM (1972) Dendritic field analysis — a reappraisal, T.I.T.J. Life Sci 2:129–140

    Google Scholar 

  • Blinkov SM, Glezer II (1968) Das Zentralnervensystem in Zahlen und Tabellen. Fischer, Jena

    Google Scholar 

  • Braitenberg V, Guglielmotti V, Sada E (1967) Correlation of crystal growth with the staining of axons by the Golgi procedure. Stain Technol 42:277–283

    Google Scholar 

  • Brodmann K (1909) Vergleichende Lokalisationslehre der Gross-hirnrinde in ihren Prinzipien dargestellt auf Grund des Zellenbaues. Barth, Leipzig

    Google Scholar 

  • Brody H (1955) Organization of the cerebral cortex. III. A study of aging in the human cerebral cortex. J CompNeurol 102:511–556

    Google Scholar 

  • Buell SJ (1982) Golgi-Cox and rapid Golgi methods as applied to autopsied human brain tissue: widely disparate results. J Neuropathol Exp Neurol 41:500–507

    Google Scholar 

  • Coleman PD, Riesen AH (1968) Environmental affects on cortical dendritic fields. I. Rearing in the dark. J Anat 102:363–374

    Google Scholar 

  • De Voogd TJ, Chang FLF, Fleeter MK, Jencius MJ, Greenough WT (1981) Distortions induced in neuronal quantification by camera-lucida analysis: comparisons using a semi-automated data acquisition system. J Neurosci Methods 3:285–294

    Google Scholar 

  • Econome C von, Koskinas GN (1925) Die Cytoarchitektonik der Hirnrinde des erwachsenen Menschen. Springer, Wien Berlin

    Google Scholar 

  • Feldman NL, Peters A (1979) A technique for estimating total spine numbers on Golgi impregnated dendrites. J Comp Neurol 188:527–542

    Google Scholar 

  • Foh E, Haug H, Koenig M, Rast A (1973) Quantitative Bestimmung zum feineren Aufbau der Sehrinde der Katze, zugleich ein methodischer Beitrag zur Messung des Neuropils. Microsc Acta 75:148–168

    Google Scholar 

  • Globus A, Scheibel AB (1967a) Pattern and field in cortical structure: the rabbit. J Comp Neurol 131:155–172

    Google Scholar 

  • Globus A, Scheibel AB (1967b) Synaptic loci on visual cortical neurons of the rabbit: the specific afferent radiation. Exp Neurol 18:116–131

    Google Scholar 

  • Golgi C (1873) Sulla struttura della sostanza grigia dell cervello. Gass Med Ital Lombarda 33:244–246

    Google Scholar 

  • Haug H, Rebhan J (1956) Der Grauzellkoeffizient der menschlichen Hirnrinde. Berechnungen nach dem Zahlenmaterial v. Econo mo's. Acta Anat 28:259–287

    Google Scholar 

  • Haug H, Kuehl S, Mecke E, Sass NL, Wasner K (1984) The significance of morphometric procedures in the investigation of age changes in cytoarchitectonic structures of human brain. J Hirnforsch 4:353–374

    Google Scholar 

  • Hollingworth T, Berry M (1975) Network analysis of dendritic fields of pyramidal cells in neocortex and Purkinje cells in the cerebellum of the rat. Philos Trans R Soc Lond [Biol] 270:227–264

    Google Scholar 

  • Horsfield K, Dart G, Olson DE, Filley GF, Cumming G (1971) Models of the human bronchial tree. J Appl Physiol 31:207–217

    Google Scholar 

  • Kok LP, Boon ME (1990) Microwaves for microscopy. J Microsc 158:291–322

    Google Scholar 

  • Landas S, Phillips MI (1982) Staining of human and rat brain vibratome sections by a new Golgi method. J Neurosci Methods 5:147–151

    Google Scholar 

  • Marin-Padilla M (1967) Number and distribution of the apical dendritic spines of the layer V pyramidal cells in man. J Comp Neurol 177:159–172

    Google Scholar 

  • Marin-Padilla M (1969) Origin of the pericellular baskets of the pyramidal cells of the human motor cortex: a Golgi study. Brain Res 14:633–646

    Google Scholar 

  • McMullen N, Glaser EM, Tagamets M (1984) Morphometry of spine-free nonpyramidal neurons in rabbit auditory cortex. J Comp Neurol 222:383–395

    Google Scholar 

  • Mehraein P, Yamada M, Tranowska-Dzidoszko E (1975) Quantitative study of dendrites and dendritic spines in Alzheimer's disease and senile dementia. In: Kreutzberg GW (ed) Advances in neurology 12. Raven Press, New York, pp 453–458

  • Milhouse OE (1981) The Golgi methods. In: Heimer L, Robards M(eds) Neuroanatomical tract-tracing methods. Plenum Press, New York, pp 314–344

    Google Scholar 

  • Nakamura S, Akiguchi I, Kameyama M, Mizuno N (1985) Age-related changes of pyramidal cell basal dendrites in layers III and V of human motor cortex: a quantitative Golgi study. Acta Neuropathol 65:281–284

    Google Scholar 

  • Peters A, Jones EG (1984) Cerebral cortex, vol 1. Plenum Press, New York London

    Google Scholar 

  • Peters A, Kara DA, Harriman KM (1985) The neuronal composition of area 17 of rat visual cortex. III. Numerical consideration. J Comp Neurol 238:263–274

    Google Scholar 

  • Poliakov GI, Zhukova GP (1954) Die strukturelle Organization des menschlichen Kortex auf Grund ontogenetischer Daten. In: Zytoarchitektonik der Großhirnrinde des Menschen. Moskau, 1949

  • Rall W (1967) Distinguishing theoretical synaptic potential computed for different soma-dendritic distribution of synaptic input. J Neurophysiol 30:1138–1168

    Google Scholar 

  • Ramón y Cajal S(1909) Histologie du système nerveux de l'homme et des Vertébrés. Maloine, Paris

    Google Scholar 

  • Rockel AJ, Hiorns RW, Powell TPS (1980) The basic uniformity in structure of the neocortex. Brain 103:221–244

    Google Scholar 

  • Ruiz-Marcos A, Valverde F (1970) Dynamic architecture of the visual cortex. Brain Res 19:25–39

    Google Scholar 

  • Sanides F (1962) Die Architektonik des menschlichen Stirnhirns. In: Müller M, Spatz H, Vogel P (eds) Monographien aus dem Gesamtgebiet der Neurologie und Psychiatrie, vol 98. Springer, Berlin Göttingen Heidelberg

    Google Scholar 

  • Schadé JP, Baxter CF (1960) Changes during growth in the volume and surface area of cortical neurons in the rabbit. Exp Neurol 2:158–178

    Google Scholar 

  • Schadé JP, Groeningen WB van (1961) Structural organization of the human cerebral cortex. Acta Anat 47:74–111

    Google Scholar 

  • Scheibel ME, Scheibel AB (1978) The dendritic structure of the human Betz cell. In: Brazier MAB, Petsche H (eds) Architectonics of the cerebral cortex. Raven Press, New York

    Google Scholar 

  • Schlaug G, Armstrong E, Schleicher A, Zilles K (1987) Quantitative aspects of the human cingulate cortex using a computer controlled image analyzer. Soc Neurosci Abstr 13:247–249

    Google Scholar 

  • Schleicher A, Zilles K, Wree A (1986) A quantitative approach to cytoarchitectonics: software and hardware aspects of a system for the evaluation and analysis of structural inhomogeneities in nervous tissue. J Neurosci Methods 18:221–235

    Google Scholar 

  • Schönheit B, Schulz E (1976) Quantitative Untersuchungen über die Dendriten-Spines an den Lamina V-Pyramidenzellen im Bereich der vorderen'zingulären Rinde der Ratte. J Hirnforsch 17:171–187

    Google Scholar 

  • Schulz E, Schönheit B, Holz L (1976) Quantitative Untersuchungen am Dendritenbaum von großen (regulären) Pyramidenzellen der Lamina V im Bereich der vorderen cingulären Rinde der Ratte. J Hirnforsch 17:155–168

    Google Scholar 

  • Schulz E, Patzwaldt A, Rudolf A (1987) Quantitative und verglei-chende Untersuchungen an Lamina V-Pyramidenneuronen der Regio retrosplenialis granularis der Ratte. J Hirnforsch 28:357–373

    Google Scholar 

  • Seldon HL (1981a) Structure of human auditory cortex. I. Cytoar-chitectonics and dendritic distributions. Brain Res 229:277–294

    Google Scholar 

  • Seldon HL (1981b) Structure of human auditory cortex. II. Axon distributions and morphological correlates of speech perception. Brain Res 229:295–310

    Google Scholar 

  • Sholl DA (1953) Dendritic organization in the neurons of the visual and motor cortices of the cat. J Anat 87:387–406

    Google Scholar 

  • Sholl DA (1955) The surface area of cortical neurons. J Anat 89:571–572

    Google Scholar 

  • Sholl DA (1956) The organization of the cerebral cortex. Methuen, London

    Google Scholar 

  • Smit GJ, Uylings HBM (1975) The morphometry of the branching pattern in dendrites of the visual cortex pyramidal cells. Brain Res 87:41–53

    Google Scholar 

  • Stephan H (1964) Die kortikalen Anteile des limbischen Systems (Morphologie und Entwicklung) Nervenarzt 35:396–401

    Google Scholar 

  • Stephan H (1975) Allocortex. In: Bargmann W (ed) Handbuch der mikroskopischen Anatomie des Menschen, vol IV/9. Springer, Berlin Heidelberg New York, pp 1–998

    Google Scholar 

  • Strahler AN 61952 Hypsometrie analysis of erosional topography. Bull Geol Soc Am 63:1117–1142

  • Uylings HBM, Smit GJ, Veltman WAM (1975) Ordering methods in quantitative analysis of branching structure of dendritic trees. In: Kreutzberg GW (ed) Physiology and dendrites, advances in neurology, vol 12. Raven Press, New York, pp 247–254

    Google Scholar 

  • Uylings HBM, Eden CG van, Verwer RWH (1984) Morphometric methods in sexual dimorphism research on the central nervous system. Prog Brain Res 61:215–222

    Google Scholar 

  • Uylings HBM, Ruiz-Marcos A, Pelt J van (1986) The metric analysis of three-dimensional dendritic tree pattern: a methodological review. J Neurosci Methods 18:127–151

    Google Scholar 

  • Verwer RWH, Pelt J van (1986) Descriptive and comparative analysis of geometrical properties of neuronal tree structures. J Neurosci Methods 18:179–206

    Google Scholar 

  • Vogt BA (1976) Retrosplenial cortex in the rhesus monkey: a cytoarchitectonic and Golgi study. J Comp Neurol 219:143–181

    Google Scholar 

  • Vogt BA (1985) Cingulate cortex. In: Peters A, Jones EG (eds) Cerebral Cortex, vol 4. Plenum Press, New York, pp 89–149

    Google Scholar 

  • Vogt BA, Rosene DL, Pandya DN (1979) Thalamic and cortical afferents differentiate anterior from posterior cingulate cortex in the monkey. Science 204:205–207

    Google Scholar 

  • Williams RS, Ferrante RJ, Caviness W (1978) The Golgi rapid method in clinical neuropathology: the morphologic consequences of suboptimal fixation. J Neuropathol Exp Neurol 37:13–33

    Google Scholar 

  • Wree A, Zilles K, Schleicher A (1980) Analyse der laminaeren Struktur der Area striata mit verschiedenen stereologischen Messmethoden. Verh Anat Ges 74:727–728

    Google Scholar 

  • Zilles K (1990) Cortex. In: Paxinos G (ed) The human nervous System. Academic Press, San Diego, pp 757–802

    Google Scholar 

  • Zilles K, Schleicher A (1980) Quantitative Analyse der laminaeren Struktur menschlicher Cortexareale. Verh Anat Ges 74:725–726

    Google Scholar 

  • Zilles K, Armstrong E, Schlaug G, Schleicher K (1986) Quantitative cytoarchitectonics of the posterior cingulate cortex in primates. J Comp Neurol 253:514–524

    Google Scholar 

  • Zhukova GP (1953) Zur Frage der Entwicklung der Rindenendigungen des motorischen Analysators. Arch Anat 30:32–38

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schlaug, G., Armstrong, E., Schleicher, A. et al. Layer V pyramidal cells in the adult human cingulate cortex. Anat Embryol 187, 515–522 (1993). https://doi.org/10.1007/BF00214429

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00214429

Key words

Navigation