Skip to main content
Log in

Influence of sedimentary environments on sulfur isotope ratios in clastic rocks: a review

  • Published:
Mineralium Deposita Aims and scope Submit manuscript

Abstract

Strata-bound sulfide deposits associated with clastic, marine sedimentary rocks, and not associated with volcanic rocks, display distributions of δS34 values gradational between two extreme types: 1. a flat distribution ranging from δS34 of seawater sulfate to values about 25‰ lower; and 2. a narrow distribution around value δS34 (sulfide)=δS34 (seawater sulfate) −50‰, and skewed to heavier values. δS34 (seawater sulfate) is estimated from contemporaneous evaporites. There is a systematic relation between the type of δS34 distribution and the type of depositional environment. Type 1 occurs in shallow marine or brackish-water environments; type 2 occurs characteristically in deep, euxinic basins. These distributions can be accounted for by a model involving bacterial reduction of seawater sulfate in systems which range from fully-closed “batches” of sulfate (type 1) to fully open systems in which fresh sulfate is introduced as reduction proceeds (type 2). The difference in the characteristic distributions requires that the magnitude of the sulfate-sulfide kinetic isotope effect on reduction be different in the two cases. This difference has already been suggested by the conflict between δS34 data for modern marine sediments and laboratory experiments. The difference in isotope effects can be accounted for by Rees' (1973) model of steady-state sulfate reduction: low nutrient supply and undisturbed, stationary bacterial populations in the open system settings tend to generate larger fractionations.

Zusammenfassung

Schichtgebundene Sulfid-Lagerstätten in Begleitung von klastischen, marinen Sedimentgesteinen ohne Beteiligung vulkanischer Gesteine zeigen kontinuierliche Verteilungen der δS34-Werte zwischen zwei Extremtypen: 1. Eine flache Verteilung im Bereich von δS34-Werten des Seewasser-Sulfats bis zu Werten, die etwa 25‰ niedriger liegen. 2. Eine eng begrenzte Verteilung um den δS34 (Sulfid)-Wert=δS34 (Seewasser-Sulfat) −50‰ und asymmetrischer Verteilungskurve mit stärkerer Besetzung bei den schwereren Werten. Das δS34 (Seewasser-Sulfat) wird von gleichaltrigen Evaporiten abgeleitet. Es besteht eine systematische Beziehung zwischen der Art der δS34-Verteilung und dem Milieu des Ablagerungsraumes. Typ 1 tritt im marinen Flachwasser oder in brackischer Umgebung auf. Typ 2 ist charakteristisch für tiefe euxinische Becken. Diese Verteilungen können erklärt werden mit Hilfe eines Modells mit bakterieller Reduktion von Meerwasser-Sulfat in Systemen, die von völlig abgeschlossenen Sulfat-„Mengen“ (Typ 1) bis zu völlig offenen Systemen reichen, in die bei fortschreitender Reduktion frisches Sulfat zugeführt wird (Typ 2). Der Unterschied in den charakteristischen Verteilungen setzt voraus, daß die Stärke der kinetischen Sulfat-Sulfid-Isotopen-Wirkung auf die Reduktion in beiden Fällen verschieden ist. Dieser Unterschied wurde bereits wegen der Widersprüche zwischen den verschiedenen δS34-Werten heutiger mariner Sedimente und Laborexperimente vermutet. Der Unterschied in der Isotopen-Wirkung kann durch das Modell von Rees (1973) für kontinuierlich ablaufende Sulfat-Reduktion erklärt werden. Geringes Nahrungsangebot und ungestörte, gleichbleibende Bakterien-Populationen in offenen Systemen neigen zur Erzeugung stärkerer Fraktionierungen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Berner, R. A.: Sedimentary pyrite formation. Am. J. Sci. 268, 1–23 (1970).

    Google Scholar 

  • Boyle, R. W.: Geology, geochemistry and origin of the lead-zinc-silver deposits of the Keno Hill-Galena Hill area, Yukon Territory. Geol. Surv. Can. 111 (1965).

  • Wanless, R. K., Stevens, R. D.: Sulfur isotope investigation of the lead-zinc-cadmium deposits of the Keno Hill-Galena Hill area, Yukon, Canada Econ. Geol. 65, 1–10 (1970).

    Google Scholar 

  • Burnie, S. W., Schwarcz, H. P., Crocket, J. H.: A sulfur isotopic study of the White Pine Mine, Michigan. Econ. Geol. 67, 895–914 (1972).

    Google Scholar 

  • Cahen, L.: Igneous activity and mineralisation episodes in the evolution of the Kibaride and Katangide orogenic belts of central Africa. In: Clifford, T. N. and I. Gass, African Magmatism and Tectonism. Oliver and Boyd, p. 97–117, 1970.

  • Dechow, E., Jensen, M. L.: Sulfur isotopes of some central African sulfide deposits. Econ. Geol. 60, 894–941 (1965).

    Google Scholar 

  • Dietz, R. S.: Sudbury structure as an astrobleme. Jour. Geol. 72, 412–434 (1964).

    Google Scholar 

  • Hadley, J. B.: The Ocoee Series, and its possible correlatives. In: G. W. Fisher et al. (ed.), studies of appalachian geology, central and southern, New York: p. 217–260. Interscience 1970.

    Google Scholar 

  • Harrison, A. G., Thode, H. G.: Mechanism of the bacterial reduction of sulfate from isotopic fractionation studies. Trans. Faraday Soc. 54, 84–92 (1958).

    Google Scholar 

  • Hartmann, M., Nielsen, H.: δ34S-Werte in rezenten Meeressedimenten und ihre Deutung am Beispiel einiger Sedimentprofile aus der westlichen Ostsee. Geol. Rundschau 58, 621–655 (1969).

    Google Scholar 

  • Holser, W. T., Kaplan, I. R.: Isotope geochemistry of sedimentary sulphates. Chem. Geol. 1, 93–135 (1966).

    Google Scholar 

  • Jensen, M. L.: Sulphur isotopes and mineral genesis, p. 143–165. In: Barnes, H. (ed.), Geochemistry of hydrothermal ore deposits, 670 p. Holt Reinhart 1967.

  • -- Whittles, A. W. G.: Sulfur isotopes of the Nairne Pyrite Deposit, South Australia: Mineral. Deposita (Berl.), 241–247 (1969).

  • Kaplan, I. R., Emery, K. O., Rittenberg, S. C.: The distribution and isotopic abundance of sulphur in recent marine sediments off southern California. Geochim. Cosmochim. Acta 27, 297–331 (1963).

    Google Scholar 

  • Rittenberg, S. C.: Microbiological fractionation of sulphur isotopes. J. Gen. Microbiol 34, 195–212 (1964).

    Google Scholar 

  • Kemp, A. W. L., Thode, H. G.: The mechanism of the bacterial reduction of sulphate and of sulphite from isotope fractionation studies. Geochim. Cosmochim. Acta 32, 71–91 (1968).

    Google Scholar 

  • Magee, M.: Geology and ore deposits of the Ducktown District, Tennessee. In: Ore deposits of the United States, 1933–1967 (J. Ridge, ed.), p. 207–241. New York: American Inst. Mining Metall. and Petrol. Eng. Inc. 1968.

    Google Scholar 

  • Marowsky, G.: Schwefel-, Kohlenstoff- und Sauerstoff-Isotopen-Untersuchungen am Kupferschiefer als Beitrag zur genetischen Deutung. Contr. Mineral. Petrol. 22, 290–334 (1969).

    Google Scholar 

  • Mauger, R. L.: A sulfur isotopic study of the Ducktown, Tennessee district, U.S.A. Econ. Geol. 67, 497–510 (1972).

    Google Scholar 

  • Nielsen, H.: Sulfur isotope ratios in ore deposits from St. Andreasberg and other districts of the Harz Mountains. Neues Jahrb. Mineral., Abhandl. 109(3), 289–321 (1968).

    Google Scholar 

  • Rees, C. E.: A steady-state model for sulphur isotope fractionation in bacterial reduction processes. Geochim. Cosmochim Acta 1973 (in press).

  • Runnels, D. D.: The mineralogy and sulphur isotopes of the Ruby Creek Prospect, Bornite, Alaska. Econ. Geol. 64, 79–90 (1969).

    Google Scholar 

  • Sangster, D. J.: Relative sulphur isotope abundances of ancient seas and strata-bound sulphide deposits. Geol. Ass. Can. Proc. 19, 79–91 (1967).

    Google Scholar 

  • Shima, M., Gross, W. H., Thode, H. G.: Sulphur isotope abundances in basic sills, differentiated granites and meteorites. J. Geophys. Res. 68, 2835–2847 (1963).

    Google Scholar 

  • Skinner, B. J.: The geology and metamorphism of the Nairne Pyritic Formation, a sedimentary sulfide deposit in South Australia. Econ. Geol. 53, 546–562 (1958).

    Google Scholar 

  • Solomon, M., Rafter, T. A., Jensen, M. L.: Isotope studies on the Rosebery, Mount Farrell and Mount Lyell ores, Tasmania. Mineral. Deposita (Berl.), 4, 172–199 (1969).

    Google Scholar 

  • Thode, H. G., Dunford, H. B., Shima, M.: Sulphur isotope abundance in rocks of the Sudbury district (Ont.) and their geological significance. Econ. Geol. 57, 565–578 (1962).

    Google Scholar 

  • —, Monster, J.: Sulphur-isotope geochemistry of petroleum, evaporites and ancient seas. Am. Assoc. Petrol. Geol. Memoir 4, 367–377 (1965).

    Google Scholar 

  • Thomson, J. E.: Geology of the Sudbury Basin. Ontario Dept. Mines, Ann. Rept. 65, part 3, 1–56 (1956).

  • Vinogradov, A. P., Chupakhin, M. S., Grinenko, V. A.: The isotopic composition of sulphur in connection with the growth of pyrites of sedimentary origin. Geochemistry (USSR) (English Transl.) 1, 97–108 (1956).

    Google Scholar 

  • —, Grinenko, V. A., Ustinov, V. I.: Isotopic composition of sulfur compounds in the Black Sea. Geochemistry (USSR) (English Transl.) 10, 973–997 (1962).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schwarcz, H.P., Burnie, S.W. Influence of sedimentary environments on sulfur isotope ratios in clastic rocks: a review. Mineral. Deposita 8, 264–277 (1973). https://doi.org/10.1007/BF00203208

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00203208

Keywords

Navigation