Skip to main content
Log in

Control of mannose/galactose ratio during galactomannan formation in developing legume seeds

  • Published:
Planta Aims and scope Submit manuscript

Abstract

Galactomannan deposition was investigated in developing endosperms of three leguminous species representative of taxonomic groups which have galactomannans with high, medium and low galactose content. These were fenugreek (Trigonella foenum-graecum L.; mannose/galactose (Man/Gal) = 1.1), guar (Cyamopsis tetragonoloba (L.) Taub.; Man/Gal = 1.6) and Senna occidentalis (L.) Link. (Man/Gal = 3.3), respectively. Endosperms were analysed at different stages of seed development for galactomannan content and the levels, in cell-free extracts, of a mannosyltransferase and a galactosyltransferase which have been shown to catalyse galactomannan biosynthesis in vitro (M. Edwards et al., 1989, Planta 178, 41–51). There was a close correlation in each case between the levels of the biosynthetic mannosyl- and galactosyltransferases and the deposition of galactomannan. The relative in vitro activities of the mannosyl- and galactosyltransferases in fenugreek and guar were similar, and almost constant throughout the period of galactomannan deposition. In Senna the ratio mannosyltransferase/galactosyltransferase was always higher than in the other two species, and it increased substantially throughout the period of galactomannan deposition. In fenugreek and guar the galactomannans present in the endosperms of seeds at different stages of development had the Man/Gal ratios characteristic of the mature seeds. By contrast the galactomannan present in Senna endosperms at the earliest stages of deposition had a Man/Gal ratio of about 2.3. During late deposition this ratio increased rapidly, stabilising at about 3.3, the ratio characteristic of the mature seed. The levels of α-galactosidase in the developing endosperms of fenugreek and guar were low and remained fairly constant throughout the deposition of the galactomannan. In Senna, α-galactosidase activity in the endosperm was low during early galactomannan deposition, but increased subsequently, peaking during late galactomannan deposition. The developmental patterns of the α-galactosidase activity and of the increase in Man/Gal ratio of the Senna galactomannan were closely similar, indicating a cause-and-effect relationship. The endosperm α-galactosidase activity in Senna was capable, in vitro, of removing galactose from guar galactomannan without prior depolymerisation of the molecule. In fenugreek and in guar the genetic control of the Man/Gal ratio in galactomannan is not the result of a post-depositional modification, and must reside in the biosynthetic process. In Senna, the Man/Gal ratio of the primary biosynthetic galactomannan product is controlled by the biosynthetic process. Yet the final Man/Gal ratio of the galactomannan in the mature seed is, to an appreciable extent, the result of galactose removal from the primary biosynthetic product by an α-galactosidase activity which is present in the endosperm during late galactomannan deposition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

al:

galactose

Man:

mannose

References

  • Dawson, R.M.C., Elliott, D.C., Elliott, W.H., Jones, K.M. (1982) Data for biochemical research. Clarendon Press, Oxford

    Google Scholar 

  • Dea, I.C.M., Morrison, A. (1975) Chemistry and interactions of seed galactomannans. Adv. Carbohydr. Chem. Biochem. 31, 241–312

    CAS  PubMed  Google Scholar 

  • Dea, I.C.M., Morris, E.R., Rees, D.A., Welsh, E.J., Barnes, H.A., Price, J. (1977) Associations of like and unlike polysaccharides: mechanism and specificity in galactomannans, interacting bacterial polysaccharides and related systems. Carbohydr. Res. 57, 249–272

    Google Scholar 

  • Edwards, M., Dea, I.C.M., Bulpin, P.V., Reid, J.S.G. (1985) Xyloglucan (amyloid) mobilisation in the cotyledons of Tropaeolum majus L. seeds following germination. Planta 163, 133–140

    Google Scholar 

  • Edwards, M., Bulpin, P.V., Dea, I.C.M., Reid, J.S.G. (1989) Biosynthesis of legume-seed galactomannans in vitro. Cooperative interactions of a guanosine 5′-diphosphate-mannose-linked (1→4)-β-d-mannosyltransferase and a uridine 5′-diphosphate galactose-linked α-d-galactosyltransferase in particulate enzyme preparations from developing endosperms of fenugreek (Trigonella foenum-graecum L.) and guar (Cyamopsis te tragonoloba [L.] Taub.). Planta 178, 41–51

    Google Scholar 

  • Mallett, I., McCleary, B.V., Matheson, N.K. (1987) Galactoman nan changes in developing Gleditsia triacanthos seeds. Phyto chemistry 26, 1889–1894

    Google Scholar 

  • McCleary, B.V. (1983) Enzymic interactions in the hydrolysis of galactomannan in germinating guar: the role of exo-β-mannanase. Phytochemistry 22, 649–658

    Google Scholar 

  • Reid, J.S.G. (1985) Cell wall storage carbohydrates in seeds. Biochemistry of the seed “gums” and “hemicelluloses”. Adv. Bot. Res. 11, 125–155

    Google Scholar 

  • Reid, J.S.G., Bewley, J.D. (1979) A dual role for the endosperm and its galactomannan reserves in the germinative physiology of fenugreek (Trigonella foenum-graecum L.), an endospermic leguminous seed. Planta 147, 145–150

    Google Scholar 

  • Reid, J.S.G., Meier, H. (1970a) Chemotaxonomic aspects of the reserve galactomannans in leguminous seeds. Z. Pflanzen physiol. 62, 89–92

    Google Scholar 

  • Reid, J.S.G., Meier, H. (1970b) Formation of reserve galactoman nan in the seeds of Trigonella foenum-graecum. Phytochemistry 9, 513–520

    Google Scholar 

  • Reid, J.S.G., Meier, H. (1973) Enzymic activities and galactoman nan mobilisation in germinating seeds of fenugreek (Trigonella foenum-graecum L. Leguminosae). Secretion of α-galactosidase and β-mannosidase by the aleurone layer. Planta 112, 301–308

    Google Scholar 

  • Saeman, J.F., Buhl, J.L., Harris, E.E. (1945) Quantitative sacchari fication of wood and cellulose. Ind. Eng. Chem. Anal. Ed. 17, 35–37

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This work was carried out with the aid of a Cooperative Research Grant (No. CRG 1) awarded by the Agricultural and Food Research Council, UK.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Edwards, M., Scott, C., Gidley, M.J. et al. Control of mannose/galactose ratio during galactomannan formation in developing legume seeds. Planta 187, 67–74 (1992). https://doi.org/10.1007/BF00201625

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00201625

Key words

Navigation