Skip to main content
Log in

Cytogenetic and molecular characterization of a newly established neuroblastoma cell line LS

  • Original Investigations
  • Published:
Human Genetics Aims and scope Submit manuscript

Summary

A new human neuroblastoma cell line (LS) that originated from an abdominal tumor of a 16-month-old girl is presented; it was classified, according to Evans, as being stage III. Morphological (dense-core particles) and biochemical characteristics (dopamine-β-hydroxylase, acetylcholinesterase, neuron-specific-enolase) confirmed the diagnosis. In addition to a slightly variable modal chromosome number of 48 or 49 (because of marker-chromosomes and autosomal trisomies), cytogenetic analysis revealed two constantly appearing chromosomes with homogeneously stained regions (HSR's). The karyo-type remained constant over 50 passages in vitro [49,XX, −12,+der5, + 17,+mar1,+mar2]. Double minutes were a rare phenomenon and appeared only in a few metaphases. In situ hybridization showed that some of the HSR's consisted of amplified N-myc copies. The distribution of the N-myc copies according to in situ hybridization signals along the HSR's was compared with the data of Southern and Northern blotting analyses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abramowsky CR, Taylor SR, Anton AH, Berk AI, Roederer M, Murphy RF (1989) Flow cytometry DNA ploidy analysis and catecholamine secretion profiles in neuroblastoma. Cancer 63:1752–1756

    Google Scholar 

  • Alitalo K (1987) Amplification of cellular oncogenes in cancer cells. In: Bradshaw RA, Prentis S (eds) Oncogenes and growth factors. Elsevier, Amsterdam, pp 17–23

    Google Scholar 

  • Alitalo K, Schwab M, Lin CC, Varmus HE, Bishop J (1983) Homogeneously staining chromosomal regions contain amplified copies of an abundantly expressed cellular oncogene (c-myc) in malignant neuroendocrine cells from a human colon carcinoma. Proc Natl Acad Sci USA 80:1707–1711

    Google Scholar 

  • Balaban-Malenbaum G, Gilbert F (1977) Double minute chromosomes and the homogeneously staining regions of a human neuroblastoma cell line. Science 198:739–741

    Google Scholar 

  • Barker PE (1982) Double minutes in human tumor cells. Cancer Genet Cytogenet 5:81–94

    Google Scholar 

  • Barlogie B, Johnston DA, Smallwood L, Raber MN, Maddox AM, Latreille J, Swartzendruber DE, Drewinko B (1982) Prognostic implications of ploidy and proliferative activity in human tumors. Cancer Genet Cytogenet 6:17–28

    Google Scholar 

  • Barsoum J, Vershavsky A (1983) Mitogenic hormones and tumor promoters greatly increase the incidence of colony forming cells bearing amplified dihydrofolate reductase genes. Proc Natl Acad Sci USA 80:5330–5334

    Google Scholar 

  • Bosman FT, Ploeg M van, Duijn P van, Schaberg A (1977) Photometric determination of the DNA distribution in the 24 human chromosomes. Exp Cell Res 105:301–311

    Google Scholar 

  • Brodeur GM, Sekhon GL, Goldstein MN (1977) Chromosomal aberrations in human neuroblastomas. Cancer 40:2256–2263

    Google Scholar 

  • Brodeur GM, Green AA, Hayes FA, Williams KJ, Williams DL, Tsiatis AA (1981) Cytogenetic features of human neuroblastomas and cell lines. Cancer Res 41:4678–4686

    Google Scholar 

  • Brodeur GM, Seeger RC, Schwab M, Varmus HE, Bishop JM (1984) Amplification of N-myc in untreated human neuroblastomas correlates with advanced disease stage. Science 224:1121–1124

    Google Scholar 

  • Carter RL, Al-Sams SZ, Corbett RB, Clinton S (1990) A comparative study of immunhistochemical staining for neuron-specific enolase, protein gene product 9. 5 and S-100 protein in neuroblastoma, Ewing sarcoma and other round cell tumours in children. Histopathology 16:461–467

    Google Scholar 

  • Claussen U (1980) The pipette method: a new rapid technique for chromosome analysis in prenatal diagnosis. Hum Genet 54:277–278

    Google Scholar 

  • Claussen U (1984) Die “Pipettenmethode” zur schnellen Karyotypisierung bei sonographischen Verdachtskriterien für eine Chromosomenanomalie. Gynäkologe 17:33–40

    Google Scholar 

  • Dutrillaux B, Couturier J (1983) Praktikum der Chromosomenanalyse (übersetzt von Jan Murken). Enke, Stuttgart

    Google Scholar 

  • Emanuel BS, Balaban G, Boyd JP, Grossman A, Negishi M, Parmiter A, Glick MC (1985) N-myc amplification in multiple homogeneously staining regions in two human neuroblastomas. Proc Natl Acad Sci USA 82:3736–3740

    Google Scholar 

  • Evans AE, D'Angio GJ, Randolph J (1971) A proposed staging for children with neuroblastoma. Cancer 27:374–378

    Google Scholar 

  • Evans AE, Chatten J, D'Angio GJ, Gerson JM, Robinson J, Schnaufler L (1980) A review of 17 IV-S neuroblastoma patients at the children's hospital of Philadelphia. Cancer 45:833–839

    Google Scholar 

  • Evans AE, Baum E, Chard A (1981) Do infants with stage IV-S neuroblastoma need treatment? Arch Dis Child 56:271–274

    Google Scholar 

  • Garson JA, Berghe JA van den, Kemshead JT (1987) Novel nonisotopic in situ hybridization technique detects small (1 kb) unique sequences in routinely G-banded human chromosomes: fine mapping of N-myc and beta-NGF genes. Nucleic Acids Res 15:4761–4770

    Google Scholar 

  • Garvin J, Bendit I, Nisen PD (1990) N-myc oncogene expression and amplification in metastatic lesions of stage IV-S neuroblastoma. Cancer 65:2572–2575

    Google Scholar 

  • Gilbert F, Balaban G, Brangman D, Herrmann N, Lister A (1983) Homogeneously staining regions and tumorigenecity. Int J Cancer 31:765–768

    Google Scholar 

  • Gilbert F, Feder M, Balaban G, Brangman D, Lurie DK, Podolsky R, Rinaldt V, Vinikoor N, Weisband J (1984) Human neuroblastomas and abnormalities of chromosomes 1 and 17. Cancer Res 44:5444–5449

    Google Scholar 

  • Grady-Leopardi EF, Schwab M, Ablin AR, Rosenau W (1986) Detection of N-myc oncogene expression in human neuroblastoma by in situ hybridization and blot analysis: relationship to clinical outcome. Cancer Res 46:3196–3199

    Google Scholar 

  • Griffin ME, Bolande RP (1969) Familial neuroblastoma with regression and maturation to ganglioneurofibroma. Pediatrics 43:377–382

    Google Scholar 

  • Harper ME, Saunders GF (1981) Localization of single copy DNA sequences of G-banded human chromosomes by in-situ hybridization. Chromosoma 83:431–439

    Google Scholar 

  • Heim S, Mitelman F (1987) Cancer cytogenetics. Liss, New York

    Google Scholar 

  • Hoff DD von, Neddham-Vandevanter DR, Yucel J, Windle BE, Wahl GM (1988) Amplified human MYC oncogenes localized to replicating submicroscopic circular DNA molecules. Proc Natl Acad Sci USA 85:4804–4808

    Google Scholar 

  • Kaneko Y, Kanda N, Maseki N, Sakurai M, Tsuchida Y, Takeda T, Okabe I, Sakurai M (1987) Different karyotypic patterns in early and advanced stage neuroblastomas. Cancer Res 47:311–318

    Google Scholar 

  • Knudson Jr AG, Meadows AT (1980) Regression of neuroblastoma IV-S: a genetic hypothesis. N Engl J Med 302:1254–1255

    Google Scholar 

  • Kohl NE, Kanda N, Schreck RR, Bruns G, Latt SA, Gilbert F, lt FW (1983) Transposition and amplification of oncogene-related sequences in human neuroblastomas. Cell 35:359–367

    Google Scholar 

  • Kohl NE, Gee CE, Alt FW (1984) Activated expression of the N-myc gene in human neuroblastomas and related tumors. Science 226:1335–1337

    Google Scholar 

  • Kohl NE, Legouy E, DePinho RA, Nisen PD, Smith RK, Gee CE, Alt FW (1986) Human N-myc is closely related in organization and nucleotide sequence to c-myc. Nature 319:73–77

    Google Scholar 

  • Kovacs G (1979) Homogeneously staining regions on marker chromosomes in malignancy. Int J Cancer 23:299–301

    Google Scholar 

  • Land H, Parada L, Weinberg R (1983) Tumorigenic conversion of primary embryo fibroblasts requires at least two cooperating oncogenes. Nature 304:596–602

    Google Scholar 

  • Look AT, Hayes FA, Nitschke R, McWilliams NB, Green AA (1984) Cellular DNA content as a predictor of response to chemotherapy in infants with unresectable neuroblastoma. N Engl J Med 311:231–235

    Google Scholar 

  • Lüdecke HJ, Senger G, Claussen U, Horsthemke B (1989) Cloning defined regions of the human genome by microdissection of banded chromosomes and enzymatic amplification. Nature 338:348–350

    Google Scholar 

  • Maniatis T, Fritsch EF, Sambrook J (1982) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, pp 384–385

    Google Scholar 

  • Mathew CGP, Smith BA, Thorpe K, Wong Z, Royle NJ, Jeffreys AJ, Ponder BAJ (1987) Deletion of genes on chromosome 1 in endocrine neoplasia. Nature 328:524–526

    Google Scholar 

  • Nakagawara A, Ikeda K, Higashi K, Sasazuki T (1990) Inverse correlation between N-myc amplification and catecholamine metabolism in children with advanced neuroblastoma. Surgery 107:43–49

    Google Scholar 

  • Rowley JD (1977) Mapping of chromosomal regions related to neoplasia: evidence from chromosomes 1 and 17. Proc Natl Acad Sci USA 74:5729–5733

    Google Scholar 

  • Rudolph B, Harbott J, Lampert F (1988) Fragile sites and neuroblastoma: fragile site at 1 p13.1 and other points on lymphocyte chromosomes from patients and family members. Cancer Genet Cytogenet 31:83–94

    Google Scholar 

  • Sandberg AA (1981) The chromosomes in human cancer and leukemia. Elsevier/North Holland Biomedical Press, New York

    Google Scholar 

  • Sandberg AA, Sakurai M, Holdworth RN (1972) Chromosomes and causation of human cancer and leukemia VIII. DMS chromosomes in a neuroblastoma. Cancer 29:1671–1679

    Article  CAS  PubMed  Google Scholar 

  • Seeger RC, Rayner SA, Banerjee A, Chang H, Lang WE, Neustein HB, Benedikt WF (1977) Morphology, growth, chromosomal pattern and fibrolytic activity of two human neuroblastoma cell lines. Cancer Res 37:1364–1371

    Google Scholar 

  • Schwab M (1985) Amplification of N-myc in human neuroblastomas. Trends Genet 1:271–275

    Google Scholar 

  • Schwab M (1987) Amplification of N-myc in human neuroblastomas. In: Bradshaw RA, Prentis S (eds) Oncogenes and growth factors. Elsevier, Amsterdam, pp 50–58

    Google Scholar 

  • Schwab M, Alitalo K, Klempnauer KH, Gilbert F, Brodeur G, Goldstein M, Trent J (1983) Amplified DNA with limited homology to myc cellular oncogene is shared by human neuroblastoma cell lines and a neuroblastoma tumour. Nature 305:245–248

    Google Scholar 

  • Schwab M, Varmus HE, Bishop JM, Grzeschik K-H, Naylor SL, Sakaguchi AY, Brodeur G, Trent J (1984a) Chromosome localization in normal human cells and neuroblastomas of a gene related to c-myc. Nature 308:288–291

    Google Scholar 

  • Schwab M, Ellison J, Busch M, Rosenau W, Varmus HE, Bishop JM (1984b) Enhanced expression of the human gene N-myc consequent to amplification of DNA may contribute to malignant progression of neuroblastoma. Proc Natl Acad Sci USA 81:4940–4944

    Google Scholar 

  • Schwab M, Varmus HE, Bishop JM (1985) Human N-myc gene contributes to neoplastic transformation of mammalian cells in culture. Nature 316:160–162

    Google Scholar 

  • Stanton LW, Schwab M, Bishop JM (1986) Nucleotide sequence of the human N-myc gene. Proc Natl Acad Sci USA 83:1772–1776

    Google Scholar 

  • Takashi T, Obata Y, Sekido Y, Hida T, Ueda R, Watanabe H, Ariyoshi Y, Sagiura T, Takahashi T (1989) Expression and amplification of myc gene family in small cell lung cancer and its relation to biological characteristics. Cancer Res 49:2683–2688

    Google Scholar 

  • Vernole P, Concato C, Pianca C, Nicoletti B, Melini G (1988) Association of cytogenetic abnormalities in a neuroblastoma and fragile sites expression. Br J Cancer 58:287–291

    Google Scholar 

  • Weston JA (1970) The migration and differentiation of neural creast cells. Adv Morphol 8:41–114

    Google Scholar 

  • Yunis JJ, Soreng AL (1984) Consitutive fragile sites and cancer. Science 226:1199–1204

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rudolph, G., Schilbach-Stückle, K., Handgretinger, R. et al. Cytogenetic and molecular characterization of a newly established neuroblastoma cell line LS. Hum Genet 86, 562–566 (1991). https://doi.org/10.1007/BF00201542

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00201542

Keywords

Navigation