Skip to main content
Log in

Electron Density distribution and bonding in silicates

A review of recent data

  • Published:
Physics and Chemistry of Minerals Aims and scope Submit manuscript

Abstract

This paper summarizes the recent results of the investigation of bonding in silicates obtained by precision X-ray diffraction. The experimental electron density distribution is compared with theoretical electron density maps calculated for model silicate molecules. The characteristic features of the chemical bonds in ortho-, ring-, chain- and framework silicates are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • BeckerP, Coppens P (1974) Extinction within the Limit of Validity of the Darwin Transfer Equations. I. General Formalisms for Primary and Secondary Extinction and Their Application to Spherical Crystals. Acta Crystallogr A 30:129–147

    Google Scholar 

  • Born M, Huang K (1954) Dynamical theory of crystal lattice. Clarendon, Oxford

  • Bragg WL (1930) The structure of silicates. Z. Kristallogr 74:237–305

    Google Scholar 

  • Breitenstein M, Dannöhl H, Meger H, Schweig A, Zittlau W (1982) Experimental versus theoretical electron densities: methods and errors. Coppens P, Hall MB (eds) Electron distributions and the chemical bond. Plenum Press New York pp 255–286

    Google Scholar 

  • Cohen IP, Ross FK, Gibbs GV (1977) An X-ray and neutron diffraction study of hydrous low cordierite. Am Mineral 62:67–78

    Google Scholar 

  • Collins GAD, Cruickshank DWJ, Breeze A (1972) Ab initio calculations on the silicate ion, orthosilicic acid and their L 2,3 X-ray spectra. J Chem Soc Faraday Transactions 68:1189–1195

    Google Scholar 

  • Coppens P, Guru Row TN, Leung P, Stevens ED, Becker P, Yang YW (1979) Net Atomic Charges and Molecular Dipole Moments from Spherical-atom X-ray Refinements and the Relation between Atomic Charge and Shape. Acta Crystallogr A 35:63–72

    Google Scholar 

  • Cowley IM (1975) Diffraction physics. North-Holland Amsterdam, Oxford

    Google Scholar 

  • Cruickshank DWJ (1961) The role of 3 d-orbitals in π-bond between (a) silicon, phosphorus, sulphur, or chlorine and (b) oxygen or nitrogen. J Chem Soc: 5486–5504

  • Dawson B (1975) Studies of atomic charge density by X-ray and neutron diffraction — a perspective. Mason R, Hoppe W (eds) Adv Struct Res Diffr Method. Vieweg Braunschweig

  • Dikov Yu P, Rekharsky VI, Gutzev GI, Dolin SP, Levin AA (1986) Model Investigation of Electronic Structure of Some Silicate Clusters by DVM-Xα. Phys Chem Min 13:48–60

    Google Scholar 

  • Djatkina ME (1975) Principles of molecular orbital theory. Nauka Moscow

    Google Scholar 

  • Dovesi R, Pisani C, Roetti C, Silvi B (1987) The electronic structure of α-quartz: a periodic Hartree-Fock calculation. J Chem Phys 86:6967–6971

    Google Scholar 

  • Downs JW, Gibbs GV (1987) An exploratory examination of the electron density and electrostatic potential of phenakite. Am Mineral 72:769–777

    Google Scholar 

  • Downs JW, Hill RJ, Newton MD, Tossel JA, Gibbs GV (1982) Theoretical and experimental charge distributions in euclase and stishovite. In Coppens P, Hall M (eds) Electron distribution and the chemical bond. Plenum Press, New York, pp 178–190

    Google Scholar 

  • Edge RA, Taylor HFW (1971) Crystal Structure of Thaumasite Ca3Si(OH)6·12H2O(SO4)(CO3). Acta Crystallogr B 27:594–601

    Google Scholar 

  • Epstein I, Stewart FR (1979) Vibrational averages of X-ray and high energy electron scattering intensities from diatomic molecules. J Chem Phys 70:5515–5521

    Google Scholar 

  • Evdokimova OA (1988) Electron density and localization of impurities in beryls on the basis of precision X-ray diffraction analysis. Doctoral Dissertation, Moscow State University (in Russian)

  • Evdokimova OA, Belokoneva EL, Tsirelson VG, Urusov VS (1988) Precision X-ray investigation of distribution of structure, electron density and electrostatic potential beryl. Geokhimi Geochimija 5:677–687 (in Russian)

    Google Scholar 

  • Evdokimova OA, Belokoneva EL, Urusov VS (1989) Essays on structural mineralogy. VIII. Microisomorphism and chemical bonds in beryl by precise X-ray diffraction data. Mineralogiheskii sboznik Livovskogo geologicheskogo obshchestva 1:3–12 (inRussian)

    Google Scholar 

  • FeilD (1977) Diffracton physics. Isr J Chem 16:103–110

    Google Scholar 

  • Finger LW, Hazen RM, Yagi T (1979) Crystal structures and electron densities of nickel and iron silicate spinels at elevated temperature or pressure. Am Mineral 64:1002–1009

    Google Scholar 

  • Fuess H, Bats JW, Joswig W (1981) Electronendichteverteilung in Fayalit bei 120 K. Z. Kristallogr 156:41–43

    Google Scholar 

  • Fujino K, Sasaki S, Takeuchi Y, Sadanaga R (1981) Y-ray Determination of Electron Distribution in Forsterite, Fayalite and Tephroite. Acta Crystallogr B 37:513–518

    Google Scholar 

  • Geisinger KH, Spackman MH, Gibbs GV (1987) Exploration of Structure, Electron Density Distribution and Bonding in Coesite with Fourier and Pseudoatom Refinement Methods using Single-Crystal X-ray Diffraction Data. J Phys Chem 91:3237–3244

    Google Scholar 

  • Gibbs JV (1982) Molecules as models for bonding in silicates. Am Mineral 67:421–450

    Google Scholar 

  • Gilbert TL, Stevens WJ, Schrenk H, Yoshimine M, Bagus PS (1973) Chemical bonding effects in the oxygen K α X-ray emission bonds of silica. Phys Rev B 8:5977–5998

    Google Scholar 

  • Godovikov AA (1983) Mineralogy. Nedra, Moscow (in Russian)

  • Gonschoreck W (1986) Electron Density and Polarized Absorption Spectra for Fayalite. Phys Chem Minerals 135:337–339

    Google Scholar 

  • Hansen N, Coppens P (1978) Testing Spherical Atom Refinements on Small-Molecule Data Sets. Acta Crystallogr A 34:909–921

    Google Scholar 

  • Hill RJ, Newton MD, Gibbs GV (1983) A crystal chemical study of stishovite. J Solid State Chem 47:185–200

    Google Scholar 

  • Hirshfeld FL (1971) Difference Densities by Least-Squares Refinement: Fumaramic Acid. Acta Crystallogr B 27:769–781

    Google Scholar 

  • Hohenberg P, Kohn W (1964) Inhomogeneous electron gas. Phys Rev B 136:864–870

    Google Scholar 

  • International Tables for X-ray Crystallography (1974) V.IV, Birmingham, Kynoch Press

  • Kato T (1957) On the Eigenfunctions Many-particle System in Quantum Mechanics. Comm Pure Appl Math X:151–177

    Google Scholar 

  • Kawamura T, Kato N (2983) Secondary Extinction Factor for Spherical Crystals. Acta Crystallogr A 39:305–310

    Google Scholar 

  • Kirfel A, Will G (1982) Dynamische und statische Modeldeformationsdichten in Forsterit. Z. Kristallogr 159:74–74

    Google Scholar 

  • Kutoglu A, Scheringer C, Meyer H, Schweig A (1982) Experimental and Theoretical Difference Densities for Thiourea. Refinement of Electron Density Distribution with Charge-Cloud Models. X. Comparison of Observed and Calculated Electron Densities. Acta Crystallogr B 38:2626–2632

    Google Scholar 

  • Lazarev AN (1988) Quantum chemistry of molecular systems and crystal chemistry of silicates. Leningrad, Nauka (in Russian)

    Google Scholar 

  • Lazarev AN, Mirgorodskii AP, Smirnov MB (1985) Vibrational spectra and dyamics of ionic-covalent crystals. Nauka, Moscow

    Google Scholar 

  • Lazarev AN, Shchegolev BF, Smirnov MB, Dolin SP (1987) Structure of silica-oxygen tetrahedron in cluster-type systems and some regularities of silicate crystal chemistry. Dokladi Akad Nauk SSSR 292:1177–1181 (in Russian)

    Google Scholar 

  • Lewis J (1975) An X0-Ncalc, core study of Bi(SiO4)3. Abstracts of X Int Congress of Crystallogr 221

  • Liebau F (1985) Structural chemistry of silicates. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Lobanov NN, Butman LA, Tsirelson VG (1989) Precision X-ray diffraction study of garnets, Na3Sc2V3O12 and Na0.09Ca2.38Mn1.72V3O12. J Struct Chem 30:113–122 Zhurnal strukturnoi khimii (in Russian)

    Google Scholar 

  • Marumo F, Isobe M, Saito Y et al. (1974) Electron Density Distribution in Crystals of Ni2SiO4. Acta Crystallogr B 30:1904–1906

    Google Scholar 

  • Marumo F, Isobe M, Akimoto S (1977) Electron Density Distribution in Crystals of γ-Fe2SiO4 and γ-Co2SiO4. Acta Crystallogr B 33:713–716

    Google Scholar 

  • Parini EV, Tsirelson VG, Ozerov RP (1985) Model of multipole anharmonic pseudoatom in precision X-ray structure analysis. Kristallografiia 30:857–866 (in Russian)

    Google Scholar 

  • Peterson RC (1980) Bonding in minerals: I. Charge density of the aluminosilicate polymorphs, and II. Molecular orbital studies of distortions in layer silicates. PhD Dissertation, Virginia Polytechnic Institute and State University, Blacksburg, Virginia

    Google Scholar 

  • Povarennikh AS (1966) Crystallochemical classification of mineral types. Naukova Dumka, Kiev (in Russian)

    Google Scholar 

  • Pushcharovski DYu (1986) Structural mineralogy of silicates and their synthetic analogs. Nedra, Moscow (in Russian)

    Google Scholar 

  • Ruedenberg K (1962) The physical nature of the chemical bond. Rev Mod Phys 34:326

    Google Scholar 

  • Runchiman WA (1987) Electron Density and Polarized Absorption Spectra of Fayalite: a Comment Phys Chem Mineral 144:387

    Google Scholar 

  • Sasaki S, Fujino K, Takeuchi Y, Sadanaga R (1980) On the Estimation of Atomic Charge by the X-ray Method for Some Oxides and Silicates. Acta Crystallogr A 36:904–915

    Google Scholar 

  • Sasaki S, Takeuchi Y, Fujino K, Akimoto S (1982) Electron density distributions of three orthopyroxenes Mg2Si2O6, Co2Si2O6 and Fe2Si2O6. Z Kristallogr 158:279–297

    Google Scholar 

  • Shomaker V, Stevenson DP (1941) Some revisions of the covalent radii and the additivity rule for the lengths of partially ionic single covalent bonds. J Am Chem Soc 63:37–40

    Google Scholar 

  • Slater J (1965) Quantum Theory of Molecules and Solids. V 1 McGraw-Hill, New York

    Google Scholar 

  • Spackman MA, Stewart RF (1984) Electrostatic properties from accurate diffraction data. In: Meth Appl Crystall Computing. Eds. Hall SR and Ashida T, Oxford

  • Spackman MA, Weber HP (1988) Electrostatic Potential in Dehydrated Sodium Zeolite A from Low-Resolution X-ray Diffraction Data. J Phys Chem 92:794–796

    Google Scholar 

  • Spackman MA, Stewart RF, Le Page Y (1981) Maps of electrostatic properties from X-ray data for SiO2(s) and Al2O3(s). In: Abstracts of 12th Int Congress of Crystallogr, Ottawa, Canada

  • Spackman MA, Hill RJ, Gibbs GV (1987) Exploration of Structure and Bonding in Stishovite with Fourier and Pseudoatom refinement Methods using Single-crystal and Powder X-ray Diffraction Data. Phys. Chem Mineral 142:139–150

    Google Scholar 

  • Stewart RF (1976) Electron Population Analysis with Rigid Pseudoatoms. Acta Crystallogr A 32:565–574

    Google Scholar 

  • Stewart RP, Whitehead WA, Donnay G (1980) The ionicity of the Si-O bond in low-quartz. Am Mineral 65:324–326

    Google Scholar 

  • Strunz H (1970) Mineralogische Tabellen — Akademische Verlagsgesellschaft Geest and Portig K, Leipzig

  • Strel'tsov VA, Tsirelson VG, Krasheninnikov MV, Ozerov RP (1985) Filtration of electron density function, derived from X-ray diffraction data. Kristallografiia 30:62–66 (inRussian)

    Google Scholar 

  • Strel'tsov VA, Tsirelson VG, Ozerov RP, Golovanov OA (1988) Electronic and thermal parameters of ions in CaF2. The results of applications of regularized least-squares. Kristallografiia 33:90–97 (in Russian)

    Google Scholar 

  • Swanson DK, Prewitt CT (1983) The crystal structure of K2SiVISi IV3 O9. Am Mineral 68:581–585

    Google Scholar 

  • Takeuchi Y, Kudoh Y (1977) Hydrogen bonding and cation ordering in Magnet Cove pectolite. Z Kristallogr 146:281–292

    Google Scholar 

  • Tamada O, Fujino K, Sasaki S (1983) Sructures and Electron Distribution of α-Co2SiO4 and α-Ni2SiO2 (Olivine Structure). Acta Crystallogr B 39:692–697

    Google Scholar 

  • Thorn N, Schwarzenbach D (1979) Abstracts of V Europ Crystallogr Meeting, Copenhagen 348

  • Tsirelson VG (1986) Electron density in crystal chemistry: methods of determination and interpretation. Itogi Nauki i Techniki Ser Crystal chemistry, v. 20 VINITI, Moscow (in Russian)

    Google Scholar 

  • Tsirelson VG (1989) Physical principles of precise X-ray structure analysis. In: Methods of structure analysis, v. 1. Nauka, Moscow:37–51

    Google Scholar 

  • Tsirelson VG, Antipin MYu (1989) Modern view on the chemical bond from electron density data. In: Porai-Koshitz MA (ed) Problems of Crystal Chemistry, Nauka, Moscow:37–51 (in Russian)

    Google Scholar 

  • Tsirelson VG, Nozik YZ, Urusov VS (1984) Electron density distributions in minerals (a review). Geokhimiia 2:160–182

    Google Scholar 

  • Tsirelson VG, Sokolova EV, Urusov VS (1986) X-ray determination of the electron density and electrostatic potential distribution in phenakite Be2SiO4. Geokhimiia 8:1170–1180 (in Russian)

    Google Scholar 

  • Tsirelson VG, Reznik IM, Ozerov RP (1989) Electron density in crystals: theory's, problem and experiment. Crystallogr Rev (in press)

  • Urusov VS (1975) Energetic crystal chemistry Moscow Nauka (in Russian)

    Google Scholar 

  • Urusov VS, Belokoneva EL (1989) Exploration of electron density and localization of microimpurities in minerals. In: Problems of crystallology. Moscow State University Press, Moscow pp 119–137(in Russian)

    Google Scholar 

  • Urusov VS, Dubrovinskii LS, Piloian GO (1986) Energy crystallochemical modelling of structure and properties of α-quartz. Dokladi Akad Nauk USSR 288:126–129 (in Russian)

    Google Scholar 

  • Urusov VS, Kurash VV (1975) Factors of intracrystalline distribution of Cations in Mg, Fe-minerals. Geokhimiia: 1099–1103 (in Russian)

  • Wal van der RI, Vos A, Kirfel A (1987) Conflicting Results for the Deformation Properties of Forsterite, Mg2SiO4. Acta Crystallogr B 43:132–143

    Google Scholar 

  • Zachariasen WA (1967) A General Theory of X-ray Diffraction in Crystals. Acta Crystallogr A 23:558–564

    Google Scholar 

  • Zoltai T (1960) Classification of silicates and other minerals with tetrahedral strucutes. Am Mineral 45:960–973

    Google Scholar 

  • Zucker UH, Schulz H (1982) Statistical Approach for the Treatment of Anharmonic Motion in Crystals. I. A Comparison of the Most Frequently Used Formalisms of Anharmonic Thermal Vibrations. Acta Crystallogr A 38:563–568

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tsirelson, V.G., Evdokimova, O.A., Belokoneva, E.L. et al. Electron Density distribution and bonding in silicates. Phys Chem Minerals 17, 275–292 (1990). https://doi.org/10.1007/BF00201461

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00201461

Keywords

Navigation