Skip to main content
Log in

A dynamical model for the P1 — I1 phase transition in anorthite, CaAl2Si2O8

I. Evidence from electron microscopy

  • Published:
Physics and Chemistry of Minerals Aims and scope Submit manuscript

Abstract

Electron diffraction and electron microscopic evidence is presented for a dynamical and reversible \(P\bar 1 - I\bar 1\) phase transition in anorthite at T c=516 K. Antiphase boundaries with a displacement vector, R=1/2[111] become unstable at T c, while other antiphase boundary loops with the same displacement vector are formed. These interfaces are very mobile and vibrate with a frequency which increases strongly with temperature. At temperatures considerably above T c, a shimmering effect is observed on imaging in dark field using diffuse c reflections. These observations are in agreement with the interpretation of the high temperature body-centered phase as a statistical dynamical average of very small c type antiphase domains of primitive anorthite. We propose that the c type antiphase domains in primitive anorthite originate from ordered and anti-ordered configurations around Ca2+ ions at (ooo) and (oio) [likewise (zoo) and (zio)] positions. The dynamical model for the transition involves a two-stage mechanism: a softmode mechanism causing the aluminosilicate framework to approach body-centered symmetry, followed by an orderdisorder of the Ca2+ ion configurations. Close to T c, statistical fluctuations set in and breathing motion type lattice vibrations of the aluminosilicate framework cause the configurations around Ca (ooo) and Ca(oio) [likewise Ca(zoo) and Ca(zio)] in the \(P\bar 1\) configuration to dynamically interchange through an intermediate \(I\bar 1\) configuration. The dynamical nature of the phase transition in anorthite is comparable to the αβ phase transition in quartz.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adlhart W, Frey F, Jagodzinski H (1980) X-ray and neutron investigations of the \(P\bar 1 - I\bar 1\) transition in pure anorthite. Acta Crystallogr A 36:450–460

    Google Scholar 

  • Adlhart W, Frey F, Zeyen W (1981) Dynamic origin of order phenomena in feldspars (anorthite). Naturwissenschaften 67:372–373

    Google Scholar 

  • Brown WL, Hoffman W, Laves F (1963) Über kontinuierliche und reversible Transformationen des Anorthits (CaAl2Si2O8) zwischen 25 und 350° C. Naturwissenschaften 50:221

    Google Scholar 

  • Bruce AD (1981) The theory of structural phase transition: cluster walls and phonons. In: Bishop AR and Schneider T (eds) Solitons and condensed matter physics. Springer Verlag, Berlin Heidelberg New York

    Google Scholar 

  • Bruno E, Chiari G, Facchinelli A (1976) Anorthite quenched from 1530° C. I. Structure refinement. Acta Crystallogr B32:3270–3280

    Google Scholar 

  • Chiari G, Faccinelli A, Bruno E (1978) Anorthite quenched from 1530° C. II. Discussion. Acta Crystallogr B 34:1757–1764

    Google Scholar 

  • Czank M (1973) Strukturuntersuchungen von Anorthit im Temperaturbereich von 20° C bis 1430° C. Dissertation, ETH Zürich

    Google Scholar 

  • Czank M, Van Landuyt J, Schulz H, Laves F, Amelinckx S (1973) Electron microscopic study of the structural changes as a function of temperature in anorthite. Z Kristallogr 138:403–418

    Google Scholar 

  • Dolino G (1988) Incommensurate phase transitions in quartz and berlinite. In: Ghose S, Coey JMD, Salje E (eds) Structural and magnetic phase transitions in minerals. Springer Verlag, New York, pp 17–38

    Google Scholar 

  • Dolino G, Bachheimer JP, Gervais F, Wright AF (1983) La transition du quartz: le point sur quelques problèmes actuels: transition ordre-désordre ou displacive, comportement thermodynamique. Bull Minéral 106:267–285

    Google Scholar 

  • Foit FF, Peacor DR (1973) The anorthite crystal structure at 410 and 830° C. Am Mineral 58:665–675

    Google Scholar 

  • Frey F, Jagodzinski H, Prandl W, Yelon Y (1977) Dynamic character of the primitive to body-centered phase transition in anorthite. Phys Chem Minerals 1:227–231

    Google Scholar 

  • Ghose S (1985) A lattice dynamical model for the \(P\bar 1 - I\bar 1\) phase transition in anorthite CaAl2Si2O8. (Abstract) Trans Am Geophys Union 66:1116

    Google Scholar 

  • Ghose S, McMullan RK, Thakur P (1983) A neutron diffraction investigation of the \(P\bar 1 - I\bar 1\) phase transition and the crystal structure of anorthite at 260° C. Geol Soc Am Ann Mtg, Indianapolis, Program and abstracts 15:581

    Google Scholar 

  • Ghose S, Weber HP, Tsukimura K, McMullan RK, Haga N (1989) A dynamical model for the \(P\bar 1 - I\bar 1\) phase transition in anorthite CaAl2Si2O8. III. X-ray and neutron diffraction analysis of spontaneous strain, structural variation and anharmonicity (in preparation)

  • Ghose S, Weber HP, McMullan RK (1987) A dynamical model for the \(P\bar 1 - I\bar 1\) phase transition in anorthite. Evidence from structure refinements above and below T c by neutron diffraction (abstract), Programme, NATO Advanced Study Institute on Physical Properties and Thermodynamic Behavior of Minerals. Cambridge UK, p 24

    Google Scholar 

  • Ghose S, Van Tendeloo G, Amelinckx S (1988) Dynamics of a second-order phase transition: \(P\bar 1 - I\bar 1\) phase transition in anorthite, CaAl2Si2O8. Science (in press)

  • Hatch DM, Ghose S (1989) A dynamical model for the \(P\bar 1 - I\bar 1\) phase transition in anorthite, CaAl2Si2O8. II. Landau theory Phys Chem Minerals (in press)

  • Heuer AH, Nord GL, Lally JS, Christie JM (1976) Origin of the c domains in anorthite. In: Wenk HR (ed) Electron microscopy in mineralogy. Springer Verlag, Berlin Heidelberg New York, pp 345–353

    Google Scholar 

  • John RJ, Müller WF (1988) Experimental studies on the kinetics of order-disorder processes in anorthite, CaAl2Si2O8. Neues Jahrb Mineral, Abh (in press)

  • Kalus C (1978) Neue Strukturbestimmung des Anorthits unter Berücksichtigung möglicher Alternativen. PhD Dissertation, University of Munich, Germany

    Google Scholar 

  • Kempster CJE, Megaw HD, Radoslovich EW (1962) The structure of anorthite, CaAl2Si2O8. I. Structure analysis. Acta Crystallogr 15:1005–1017

    Google Scholar 

  • Laves F, Czank M, Schulz H (1970) The temperature dependence of the reflection intensities of anorthite (CaAl2Si2O8) and the corresponding formation of domains. Schweiz Mineral Petrogr Mitt 50:519–525

    Google Scholar 

  • Laves F, Goldsmith JR (1954) Long-range-short-range order in calcic plagioclases as a continuous and reversible function of temperature. Acta Crystallogr 7:465–472

    Google Scholar 

  • Müller WF, Wenk HR (1973) Changes in the domain structure of anorthites induced by heating. Neues Jahrb Mineral, Monatsh 1973:17–26

    Google Scholar 

  • Müller WF, John RJ, Kroll H (1984) On the origin and growth of antiphase domains iun anorthite. Bull Mineral 107:489–494

    Google Scholar 

  • Redfern SAT, Salje E (1987) Thermodynamics of plagioclase IL Temperature evolution of the spontaneous strain at the \(I\bar 1 - P\bar 1\) phase transition in anorthite. Phys Chem Minerals 14:189–195

    Google Scholar 

  • Robertson IM, Wayman CM (1983) Tweed microstructures. I. Characteristics in β — NiAl. Philos Mag A 48:421–442

    Google Scholar 

  • Salje E (1987) Thermodynamics of Plagioclase I: Theory of the \(I\bar 1 - P\bar 1\) phase transition in anorthite and Ca-rich plagioclases. Phys Chem Minerals 14:181–188

    Google Scholar 

  • Smith JV (1974) Feldspar minerals, v 1. Crystal structure and physical properties. Springer Verlag, Berlin Heidelberg New York

    Google Scholar 

  • Staehli JL, Brinkmann D (1974) A nuclear magnetic study of the phase transition in anorthite. CaAl2Si2O8. Z Kristallogr 140:360–373

    Google Scholar 

  • Van Landuyt J, Van Tendeloo G, Van Sande M, Delaney L, Amelinckx S (1981) Experimental evidence for pretransitional fluctuations and domain movements. Metall Trans 12A:715–721

    Google Scholar 

  • Van Tendeloo G, Van Landuyt J, Amelinckx S (1976) The phase transition in quartz and AlPO4 as studied by electron microscopy and diffraction. Phys Status Solidi A33:723–735

    Google Scholar 

  • Wainwright JE, Starkey JT (1971) A refinement of the structure of anorthite. Z Kristallogr 133:75–80

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Van Tendeloo, G., Ghose, S. & Amelinckx, S. A dynamical model for the P1 — I1 phase transition in anorthite, CaAl2Si2O8 . Phys Chem Minerals 16, 311–319 (1989). https://doi.org/10.1007/BF00199550

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00199550

Keywords

Navigation