Skip to main content
Log in

The characterization of ion channels formed by Pasteurella multocida dermonecrotic toxin

  • Original Investigations
  • Published:
Medical Microbiology and Immunology Aims and scope Submit manuscript

Abstract

The influence of the dermonecrotic lethal toxin (∼120 kDa) produced by Pasteurella multocida serovarian D on planar phospholipid bilayers was studied. It was found that the toxin is able to increase the conductance of the bilayers by formation of low-conductive and cation-selective ion channels [27 pS at 4.0 M KCl, pH 7.5; zero current potential equals to -14.5±0.5 mV at threefold transmembrane gradient KCl (120 mM/40 mM)]. In biionic conditions the channels displayed weak selectivity between Na, K and Ca ions. The shapes of current-voltage characteristics (which were measured at different pH and salt concentrations) indicate that an energetic barrier for passing ions is situated near the center of the water pore of the ion channels. The effective diameter of the ion channel's water pore was established to be equal to 2.1±0.3 nm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Belmonte G, Pederzolli C, Macek P, Menestrina G (1993) Pore formation by the sea anemone cytolysin Equinatoxin II in red blood cells and model lipid membranes. J Membr Biol 131:11–22

    Article  PubMed  CAS  Google Scholar 

  2. Benz R, Schmid A, Wagner W, Goebel W (1989) Pore formation by the Escherichia coli hemolysin: evidence for an association-dissociation equilibrium of the pore-forming aggregates. Infect Immun 57:887–895

    PubMed  CAS  Google Scholar 

  3. Bergelson LD, Dyatlovitskaya EV, Molotkovsky JG, Barsukov LI, Prokazova NV (1981) Preparative biochemistry of lipids. Nauka, Moscow, pp 66–82 (in Russian)

    Google Scholar 

  4. Bullock JO, Cohen FS, Dankert JR, Cramer WA (1983) Comparison of the macroscopic and single channel conductance properties of colicin E1 and its COOH-terminal tryptic peptide. J Biol Chem 258:9908–9912

    PubMed  CAS  Google Scholar 

  5. De Grado WE, Lear JD (1990) Conformationally constrained α-helical peptide models for protein ion channels. Biopolymers 29:205–213

    Article  Google Scholar 

  6. Felix R, Fleisch H, Frandsen PL (1992) Effect of P. multocida toxin on bone resorption in vitro. Infect Immun 60:4984–5003

    PubMed  CAS  Google Scholar 

  7. Goldman DE (1943) Potential, impedance and rectification in membranes. J Gen Physiol 27:37–60

    Article  CAS  Google Scholar 

  8. Kalmykova LI, Esepchuk YV, Shegidevich EA, Navasardyants DG (1991) Isolation and some properties of Pasteurella multocida dermonecrotic toxin. Mol Gen Mikrobiol Virusol N8:29–32 (in Russian)

    Google Scholar 

  9. Krasilnikov OV (1990) The protein channel-formers. III. Colicins. Biol Nauki N10:5–20 (in Russian)

    Google Scholar 

  10. Krasilnikov OV, Sabirov RZ (1989) Ion transport through channels formed by Staphylococcus aureus alpha-toxin. Gen Physiol Biophys 8:213–222

    PubMed  CAS  Google Scholar 

  11. Krasilnikov OV, Ternovsky VI, Tashmukhamedov BA (1981) The properties of ion-channels in bilayer phospholipid membranes induced by alpha-staphylotoxin. Biofizika 26:271–275 (in Russian)

    CAS  Google Scholar 

  12. Krasilnikov OV, Usmanova AM, Sabirov RZ, Tashmukhamedov BA, Yezepchuk YV, Bicaev AR (1985) The membrane activity of cholesterol-dependent B. cereus cytolysin. Biol Membrany 2:302–309 (in Russian)

    CAS  Google Scholar 

  13. Krasilnikov OV, Sabirov RZ, Ternovsky VI, Tashmukhamedov BA (1986) Nature and approximate mathematical description of properties of latrotoxin channel. Biol Membrany 3:936–943 (in Russian)

    CAS  Google Scholar 

  14. Krasilnikov OV, Sabirov RZ, Ternovsky VI, Merzliak PG, Tashmukhamedov BA (1989) The structure of S. aureus alpha-toxin induced ion channel. Gen Physiol Biophys 7:467–473

    Google Scholar 

  15. Krasilnikov OV, Muratkhodjaev JN, Voronov SE, Yezepchuk YV (1991) the ionic channels formed by cholera toxin in planar bilayer lipid membranes are entirely attributable to its Bsubunit. Biochim Biophys Acta 1067:166–170

    Article  PubMed  CAS  Google Scholar 

  16. Krasilnikov OV, Sabirov RZ, Ternovsky VI (1991) Proteins, ion channels and regulation of ion transport through membranes. FAN, Tashkent, p 230 (in Russian)

    Google Scholar 

  17. Krasilnikov OV, Muratkhodjaev JN, Zitzer AO (1992) The mode of action of Vibrio cholerae cytolysin. The influences on both erythrocytes and planar lipid bilayers. Biochim Biophys Acta 1111:7–16

    Article  PubMed  CAS  Google Scholar 

  18. Krasilnikov OV, Sabirov RZ, Ternovsky VI, Merzliak PG, Muratkhodjaev JN (1992) The simple method of determination of ion channels water pore radii in planar lipid bilayer membranes. FEMS Microbiol Immunol 105:93–100

    Article  Google Scholar 

  19. Krasilnikov OV, Ternovsky VI, Navasardyants DG, Kalmykova LI (1993) The channel-forming properties of Pasteurella multocida dermonecrotic toxin. Med Microbiol Immunol 182:197

    Google Scholar 

  20. Lakey JH (1993) Pore-forming colicins. Med Microbiol Immunol 182:198

    Google Scholar 

  21. Letellier L, Guihard G, Boulanger P, Duche D, Behedetti H, Lloubes R (1993) In vivo properties of colicin A: channel activity and translocation across the E. coli envelope. Med Microbiol Immunol 182:199

    Google Scholar 

  22. Martineaudoize B, Caya I, Gagne S, Jutras I, Dumas G (1993) Effects of Pasteurella multocida toxin on the osteoclast population of the rat. J Comp Pathol 108:81–92

    CAS  Google Scholar 

  23. Mueller P, Rudin DO, Tien HT, Wescott WC (1963) Methods for the formation on single bimolecular lipid membranes in aqueous solution. J Phys Chem 67:534–535

    CAS  Google Scholar 

  24. Nakai T, Kume K (1987) Purification of three fragment of the dermonecrotic toxin from Pasteurella multocida. Res Vet Sci 42:232–237

    PubMed  CAS  Google Scholar 

  25. Nakai T, Sawata A, Tsuji M, Samejima Y, Kume K (1984) Purification of dermonecrotic toxin from a sonic extract of Pasteurella multocida SP-72 Serotype D. Infect Immun 46:429–434

    PubMed  CAS  Google Scholar 

  26. Petersen SK (1990) The complete nucleotide sequence of Pasteurella multocida toxin gene and evidence for a transcriptional repressor, TxaR Mol Microbiol 4:821–830

    CAS  Google Scholar 

  27. Rhoades KR, Rimler RB (1984) Avian pasteurellosis. In: Hofstad MS, Barnes HJ, Calnek BW, Reid WM, Youder HW (eds) Diseases of Poultry, 8th edn. Iowa State University Press, Ames, pp 141–156

    Google Scholar 

  28. Rutter JM, Mackenzie A (1984) Pathogenesis of atrophic rhinits in pigs: a new perspective. Vet Rec 114:89–90

    PubMed  CAS  Google Scholar 

  29. Sawaryn A, Dronin H (1991) Reevaluation of hydropathy profiles of voltage-gated ionic channels. Experiencia 47:962–964

    Article  CAS  Google Scholar 

  30. Shamoo A, David A, Goldstein S (1977) Isolation of ionophores their role in energy transduction. Biochim Biophys Acta 472:13–53

    PubMed  CAS  Google Scholar 

  31. Thomson RG, Benson ML, Savan MV (1969) Pneumonic pasteurellosis of cattle: microbiology and immunology. Can J Comp Med 33:194–206

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krasilnikov, O.V., Ternovsky, V.I., Navasardyants, D.G. et al. The characterization of ion channels formed by Pasteurella multocida dermonecrotic toxin. Med Microbiol Immunol 183, 229–237 (1994). https://doi.org/10.1007/BF00198457

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00198457

Keywords

Navigation