Skip to main content
Log in

Oxytocin solution structure changes upon protonation of the N-terminus in dimethyl sulfoxide

  • Research Papers
  • Published:
Journal of Biomolecular NMR Aims and scope Submit manuscript

Summary

With the combined use of various two-dimensional (2D) NMR techniques, a complete assignment of the 1H and 13C resonances of oxytocin, \({\text{C}}{\text{s - Pro - Leu - Gly - NH}}_{\text{2}}\), for two molecular states, protonated and unprotonated at the N-terminal group, was performed in dimethyl sulfoxide. A small but distinct change in the backbone conformation of the six-residue cyclic moiety, associated with the protonation, was first suggested from those NMR parameters relevant to conformation, such as change with temperature in the chemical shifts of the peptide amide protons and changes in chemical shifts and homonuclear as well as heteronuclear three-bond coupling constants. The solution structures of oxytocin for the protonated and unprotonated forms were then calculated using distance analysis in dihedral-angle space, based on a relaxation matrix evaluated from quantitative NOE intensities at different mixing times. Total amounts of 93 and 105 distances were determined for the protonated and the unprotonated forms, respectively. There were 25 interresidue distances relevant to the structure of the cyclic moiety for the protonated form of oxytocin and 43 for the unprotonated form. Overall structures with the lowest target penalty function were similar between the two forms, having a β-turn structure at the endocyclic residues of the Tyr-Ile-Gln-Asn moiety. The local backbone conformations near the N-terminus, however, were significantly different between the two forms. This was found to be due to a change in the dihedral angle of the disulfide bridge (χss around C-S-S-C), which closes the ring in the cyclic peptide. The dihedral angle was about +90° for the unprotonated form and an intermediate value of about +45° for the protonated form.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bax A., Griffey R.H. and Hawkins B.L. (1983) J. Magn. Reson., 55, 301–315.

    Google Scholar 

  • Bax A. and Summers M.F. (1986) J. Am. Chem. Soc., 108, 2093–2094.

    Google Scholar 

  • Bhaskaran R., Chuang L.-C. and Yu C. (1992) Biopolymers, 32, 1599–1608.

    Google Scholar 

  • Braun W. and Gō N. (1985) J. Mol. Biol., 186, 611–626.

    Google Scholar 

  • Braun W., Bösch C., Brown L.R., Gō N. and Wüthrich K. (1981) Biochim. Biophys. Acta, 667, 377–396.

    Google Scholar 

  • Brewster A.I.R., Glasel J.A. and Hruby V.J. (1972) Proc. Natl. Acad. Sci. USA, 69, 1470–1474.

    Google Scholar 

  • Brewster A.I.R., Hruby V.J., Spatola A.F. and Bovey F.A. (1973a) Biochemistry, 12, 1643–1649.

    Google Scholar 

  • Brewster A.I.R., Hruby V.J., Glasel J.A. and Tonelli A.E. (1973b) Biochemistry, 12, 5294–5304.

    Google Scholar 

  • Dorman D.E. and Bovey F.A. (1973) J. Org. Chem., 38, 2379–2383.

    Google Scholar 

  • Deslauriers R., Walter R. and Smith I.C.P. (1972) Biochem. Biophys. Res. Commun., 48, 854–859.

    Google Scholar 

  • Deslauriers R., Walter R. and Smith I.C.P. (1974) Proc Natl. Acad. Sci. USA, 71, 265–268.

    Google Scholar 

  • Endo S., Wako H., Nagayama K. and Gō N. (1991) In Computational Aspects of the Study of Biological Macromolecules by Nuclear Magnetic Resonance Spectroscopy (Eds, Hoch J.C., Poulsen F.M. and Redfield C.) Plenum Press, New York, pp. 233–251.

    Google Scholar 

  • Ferrier B.M., Jarvis D. and Du Vigneaud V. (1965) J. Biol. Chem., 240, 4264–4266.

    Google Scholar 

  • Glickson J.D., Urry D.W., Havran R.T. and Walter R. (1972) Proc. Natl. Acad. Sci. USA, 69, 2136–2140.

    Google Scholar 

  • Glickson J.D. (1975) In Peptides; Chemistry, Structure, Biology (Eds, Walter R. and Meienhofer J.) Ann Arbor Scientific Publications, Ann Arbor, pp. 787–802.

    Google Scholar 

  • Güntert P., Qian Y.Q., Otting G., Müller M., Gehring W. and Wüthrich K. (1991) J. Mol. Biol., 217, 531–540.

    Google Scholar 

  • Hansen P.E. (1991) Biochemistry, 30, 10457–10466.

    Google Scholar 

  • Hendrickson W.A. and Wüthrich K. (1992) Macromolecular Structures, Current Biology Ltd., London, pp. 2–285.

    Google Scholar 

  • Hofmann M., Gehrke M., Bermel W. and Kessler H. (1989) Magn. Reson. Chem., 27, 877–886.

    Google Scholar 

  • Honig D., Katat E.A., Katz L., Levinthal D. and Wu T.T. (1973) J. Mol. Biol., 80, 277–295.

    Google Scholar 

  • Hruby V.J., Deb K.K., Fox J., Bjarnason J. and Tu A.T. (1978) J. Biol. Chem., 253, 6060–6067.

    Google Scholar 

  • Inoue T. and Akasaka K. (1987) J. Biochem., 102, 1371–1378.

    Google Scholar 

  • Jeener J., Meier B.H., Bachmann P. and Ernst R.R. (1979) J. Chem. Phys., 71, 4546–4553.

    Google Scholar 

  • Johnson L.F., Schwartz I.L. and Walter R. (1969) Proc. Natl. Acad. Sci. USA, 64, 1269–1275.

    Google Scholar 

  • Kessler H., Griesinger C. and Wagner K. (1987) J. Am. Chem. Soc., 109, 6927–6933.

    Google Scholar 

  • Kumar A., Ernst R.R. and Wüthrich K. (1980) Biochem. Biophys. Res. Commun., 95, 1–6.

    Google Scholar 

  • Lewis P.N., Momany F.A. and Scheraga H.A. (1973) Biochim. Biophys. Acta, 303, 211–229.

    Google Scholar 

  • Macura S. and Ernst R.R. (1980) Mol. Phys., 41, 95–117.

    Google Scholar 

  • Madrid M., Llinás E. and Llinás M. (1991) J. Magn. Reson., 93, 329–346.

    Google Scholar 

  • Meraldi J.-P. and Hruby V.J. (1976) J. Am. Chem. Soc., 98, 408–410.

    Google Scholar 

  • Molday R.S., Englander S.W. and Kallen R.G. (1972) Biochemistry, 11, 150–158.

    Google Scholar 

  • Müller L. (1987) J. Magn. Reson., 72, 191–196.

    Google Scholar 

  • Nakai T., Kidera A. and Nakamura H. (1993) J. Biomol. NMR, 3, 19–40.

    Google Scholar 

  • Neuthaus D., Wagner G., Wüthrich K., Vašák M. and Kägi J.H.R. (1985) Eur. J. Biochem., 151, 257–273.

    Google Scholar 

  • Pearlman D.A. and Kollman P.A. (1991) J. Mol. Biol., 220, 457–479.

    Google Scholar 

  • Pratum T.K., Hammen P.K. and Andersen N.H. (1988) J. Magn. Reson., 78, 376–381.

    Google Scholar 

  • Ramachandran G.N. and Sasisekharan V. (1968) Adv. Protein Chem., 23, 283–437.

    Google Scholar 

  • Rance M., Sørensen O.W., Bodenhausen G., Wagner G., Ernst R.R. and Wüthrich K. (1983) Biochem. Biophys. Res. Commun., 117, 479–485.

    Google Scholar 

  • Richardson J.S. (1981) Adv. Protein Chem., 34, 167–339.

    Google Scholar 

  • Schmidt J.M., Ohlenschläger O., Rüterjans H., Grzonka Z., Kojro E., Pavo I. and Fahrenholz F. (1991) Eur. J. Biochem., 201, 355–371.

    Google Scholar 

  • Sheinblatt M. (1966) J. Am. Chem. Soc., 88, 2123–2126.

    Google Scholar 

  • Tanford C. (1961) Physical Chemistry of Macromolecules, Wiley, New York.

    Google Scholar 

  • Thomas, W.A. and Williams, M.K. (1972) J. Am. Chem. Soc., Chem. Commun., 994.

  • Urry D.W., Ohnishi M. and Walter R. (1970) Proc. Natl. Acad. Sci. USA, 66, 111–115.

    Google Scholar 

  • Urry D.W. and Walter R. (1971) Proc. Natl. Acad. Sci. USA, 68, 956–958.

    Google Scholar 

  • Wagner G., Braun W., Havel T.F., Schaumann T., Gō N. and Wüthrich K. (1987) J. Mol. Biol., 196, 611–639.

    Google Scholar 

  • Walter R., Glickson J.D., Schwartz I.L., Havran R.T., Meienhofer J. and Urry D.W. (1972) Proc. Natl. Acad. Sci. USA, 69, 1920–1923.

    Google Scholar 

  • Walter R., Smith I.C.P. and Deslauriers R. (1974) Biochem. Biophys. Res. Commun., 58, 216–221.

    Google Scholar 

  • Walter R., Wyssbrod H.R. and Glickson J.D. (1977) J. Am. Chem. Soc., 99, s7326–7332.

    Google Scholar 

  • Wilmot C.M. and Thornton J.M. (1990) Protein Eng., 3, 479–493.

    Google Scholar 

  • Wood S.P., Tickle I.J., Treharne A.M., Pitts J.E. and Wyssbrod H.R. (1986) Science, 232, 633–636.

    Google Scholar 

  • Wüthrich K., Tun-kyi A. and Schwyzer R. (1972) FEBS Lett., 25, 104–108.

    Google Scholar 

  • Wüthrich K. (1986) NMR of Proteins and Nucleic Acids, Pwiley, New York, pp. 117–161.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kato, T., Endo, S., Fujiwara, T. et al. Oxytocin solution structure changes upon protonation of the N-terminus in dimethyl sulfoxide. J Biomol NMR 3, 653–673 (1993). https://doi.org/10.1007/BF00198370

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00198370

Keywords

Navigation