Skip to main content
Log in

Dynamic Structure of Organic Compounds in Solution According to NMR Data and Quantum Chemical Calculations: III. Noradrenaline

  • Published:
Russian Journal of Organic Chemistry Aims and scope Submit manuscript

Abstract

Parameters of restricted internal rotation about the C–C bond of the O–C–C–N fragment in the neutral and protonated forms of noradrenaline in D2O, CD3OD, and DMSO-d6 were estimated by quantum molecular dynamics and NMR methods. The one-dimensional internal rotation potentials were calculated in the MP2/aug-cc-pVTZ approximation. The multiplet structure of the 1H NMR spectra of neutral and protonated noradrenaline in the given solvent series was resolved, and signals of diastereotopic methylene protons pro-S and pro-R were assigned. The conformational dependences of the proton coupling constants were calculated at the FPT-DFT 6-311++G(2df,2p) level of theory. The relative contributions of different rotamers were evaluated by solving a series of inverse vibrational problems in terms of the large-amplitude vibration model to achieve the best agreement between the calculated and experimental coupling constants. The neutral form of noradrenaline was shown to prefer conformation g+, while conformer g was found to be the minor one. Protonation of noradrenaline molecule essentially stabilizes conformer g. In all cases, the contribution of conformer t with transoid orientation of the oxygen and nitrogen atoms did not exceed 1%. The obtained data can be useful for the construction of a quantitative model for noradrenaline binding to receptors at the molecular level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ganina, T.A. and Chertkov, V.A., Russ. J. Org. Chem., 2017, vol. 53, p. 12. doi https://doi.org/10.1134/S1070428017010043

    Article  CAS  Google Scholar 

  2. Carcabal, P., Snoek, L.C., and Van Mourik, T., Mol. Phys., 2005, vol. 103, p. 1633. doi https://doi.org/10.1080/00268970500086039

    Article  CAS  Google Scholar 

  3. Melandri, S., Ragno, S., and Maris, A., J. Phys. Chem. A, 2009, vol. 113, p. 7769. doi https://doi.org/10.1039/B307063H

    Article  CAS  Google Scholar 

  4. Van Mourik, T., Phys. Chem. Chem. Phys., 2004, vol. 6, p. 2827. doi https://doi.org/10.1039/B315520J

    Article  CAS  Google Scholar 

  5. Ganina, T.A. and Chertkov, V.A., Russ. J. Org. Chem., 2016, vol. 52, p. 489. doi https://doi.org/10.1134/S1070428016040023

    Article  CAS  Google Scholar 

  6. Carlström, D. and Bergin, R., Acta Crystallogr., 1967, vol. 23, p. 313. doi https://doi.org/10.1107/S0365110X67002646

    Article  PubMed  Google Scholar 

  7. Samoshin, V.V., Chertkov, V.A., Vatlina, L.P., Dobretsova, E.K., Simonov, N.A., Kastorsky, L.P., Gremyachinsky, D.V., and Schneider, H.-J., Tetrahedron Lett., 1996, vol. 37, p. 3981. doi https://doi.org/10.1016/0040-4039(96)00761-7

    Article  CAS  Google Scholar 

  8. Samoshin, V.V., Chertkov, V.A., Gremyachinskiy, D.E., Shestakova, A.K., Dobretsova, E.K., Vatlina, L.P., and Schneider, H.-J., Tetrahedron Lett., 2004, vol. 45, p. 7823. doi https://doi.org/10.1016/j.tetlet.2004.09.004

    Article  CAS  Google Scholar 

  9. Samoshin, A.V., Veselov, I.S., Huynh, L., Shestakova, A.K., Chertkov, V.A., Grishina, G.V., and Samoshin, V.V., Tetrahedron Lett., 2011, vol. 52, p. 5375. doi https://doi.org/10.1016/j.tetlet.2011.08.038

    Article  CAS  Google Scholar 

  10. Samoshin, V.V., Brazdova, B., Chertkov, V.A., Gremyachinskiy, D.E., Shestakova, A.K., Dobretsova, E.K., Vatlina, L.P., Yuan, J., and Schneider, H.-J., Arkivoc, 2005, part (iv), p. 129.

  11. Zheng, Y., Liu, X., Samoshina, N.M., Chertkov, V.A., Franz, A., Guo, X., and Samoshin, V.V., Nat. Prod. Commun., 2012, vol. 7, p. 353.

    CAS  PubMed  Google Scholar 

  12. Samoshin, A.V., Veselov, I.S., Chertkov, V.A., Yaroslavov, A.A., Grishina, G.V., Samoshina, N.M., and Samoshin, V.V., Tetrahedron Lett., 2013, vol. 54, p. 5600. doi https://doi.org/10.1016/j.tetlet.2013.07.156

    Article  CAS  Google Scholar 

  13. Gribov, L.A. and Pavlyuchko, A.I., Variatsionnye metody resheniya angarmonicheskikh zadach v teorii kolebatel’nykh spektrov molekul (Variational Methods of Solving Anharmonic Problems in the Molecular Vibrational Spectra Theory), Moscow: Nauka, 1998.

    Google Scholar 

  14. Altona, C., Francke, R., De Haan, R., Ippel, J.H., Daalmans, G.J., Westra-Hoekzema, A.J.A., and Van Wijk, J., Magn. Reson. Chem., 1994, vol. 32, p. 670. doi https://doi.org/10.1002/mrc.1260321107

    Article  CAS  Google Scholar 

  15. Zubkov, S.V. and Chertkov, V.A., Int. J. Mol. Sci., 2003, vol. 4, p. 107. doi https://doi.org/10.3390/i4030107

    Article  CAS  Google Scholar 

  16. Deng, W., Cheeseman, J.R., and Frisch, M.J., J. Chem. Theory Comput., 2006, vol. 2, p. 1028. doi https://doi.org/10.1021/ct600110u

    Article  CAS  PubMed  Google Scholar 

  17. Kovalev, V.V., Shokova, E.A., Chertkov, V.A., and Tafeenko, V.A., Eur. J. Org. Chem., 2016, no. 8, p. 1508. doi https://doi.org/10.1002/ejoc.201501581

  18. Muzalevskiy, V.M., Ustynyuk, Yu.A., Gloriozov, I.P., Chertkov, V.A., Rulev, A.Yu., Kondrashov, E.V., Ushakov, I.A., Romanov, A.R., and Nenajdenko, V.G., Chem. Eur. J., 2015, vol. 21, no. 47, p. 16982. doi https://doi.org/10.1002/chem.201502706

    Article  CAS  PubMed  Google Scholar 

  19. Golotvin, S.S. and Chertkov, V.A., Russ. Chem. Bull., 1997, vol. 46, p. 423. doi https://doi.org/10.1007/BF02495389

    Article  CAS  Google Scholar 

  20. Cheshkov, D.A., Synitsyn, D.O., Sheberstov, K.F., and Chertkov, V.A., J. Magn. Reson., 2016, vol. 272, p. 10. doi https://doi.org/10.1016/j.jmr.2016.08.012

    Article  CAS  PubMed  Google Scholar 

  21. Samoshin, V.V., Zheng, Y., and Liu, X., J. Phys. Org. Chem., 2017, vol. 30, p. 3689. doi https://doi.org/10.1002/poc.3689

    Article  CAS  Google Scholar 

  22. Gergely, A., Kiss, T., Deák, G., and Sóvágó, I., Inorg. Chim. Acta, 1981, vol. 56, p. 35. doi https://doi.org/10.1016/S0020-693(00)88544-8

    Article  CAS  Google Scholar 

  23. Hermecz, I., Advances in Heterocyclic Chemistry, Katritzky, A.R., Ed., London: Academic, 1987, vol. 42, p. 83.

    Article  CAS  Google Scholar 

  24. Foresman, J.B. and Frisch, A., Exploring Chemistry with Electronic Structure Methods, Pittsburgh: Gaussian, 1996.

    Google Scholar 

  25. Sergeev, N.M. and Chertkov, V.A., Dokl. Akad. Nauk SSSR, 1986, vol. 286, p. 1186.

    CAS  Google Scholar 

  26. Pecul, M. and Sadlej, J., Chem. Phys., 1998, vol. 234, p. 111. doi https://doi.org/10.1016/S0301-0104(98)00168-2

    Article  CAS  Google Scholar 

  27. Chertkov, V.A., Shestakova, A.K., and Davydov, D.V., Chem. Heterocycl. Compd., 2011, vol. 47, p. 45. doi https://doi.org/10.1007/s10593-011-0718-z

    Article  CAS  Google Scholar 

  28. Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G.A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H.P., Izmay-lov, A.F., Bloino, J., Zheng, G., Sonnenberg, J.L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J.A., Jr., Peralta, J.E., Ogliaro, F., Bearpark, M., Heyd, J.J., Brothers, E., Kudin, K.N., Staroverov, V.N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J.C., Iyengar, S.S., Tomasi, J., Cossi, M., Rega, N., Millam, J.M., Klene, M., Knox, J.E., Cross, J.B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R.E., Yazyev, O., Austin, A.J., Cammi, R., Pomelli, C., Ochterski, J.W., Martin, R.L., Morokuma, K., Zakrzewski, V.G., Voth, G.A., Salvador, P., Dannenberg, J.J., Dapprich, S., Daniels, A.D., Farkas, Ö., Foresman, J.B., Ortiz, J.V., Cioslowski, J., and Fox, D.J. Gaussian 09W, Revision A.02, Wallingford CT: Gaussian, 2009.

    Google Scholar 

  29. Chertkov, A.V., Pokrovskiy, O.I., Shestakova, A.K., and Chertkov, V.A., Chem. Heterocycl. Compd., 2008, vol. 44, p. 621. doi https://doi.org/10.1007/s10593-008-0083-8

    Article  CAS  Google Scholar 

  30. Gray, S.K., Miller, W.H., Yamaguchi, Y., and Shaefer, H.F. III, J. Chem. Phys., 1980, vol. 73, p. 2733. doi https://doi.org/10.1063/1.440494

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Chertkov.

Additional information

For communication II, see [1].

Russian Text © The Author(s), 2019, published in Zhurnal Organicheskoi Khimii, 2019, Vol. 55, No. 3, pp. 411–419.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ganina, T.A., Chertkov, V.A. Dynamic Structure of Organic Compounds in Solution According to NMR Data and Quantum Chemical Calculations: III. Noradrenaline. Russ J Org Chem 55, 354–361 (2019). https://doi.org/10.1134/S107042801903014X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S107042801903014X

Keywords

Navigation