Skip to main content
Log in

The concentration of Ca, Sr, Ba and Mn in successive needle age classes of Norway spruce [Picea abies (L.) Karst.]

  • Original Article
  • Published:
Trees Aims and scope Submit manuscript

Abstract

The concentrations of Ca, Sr, Ba and Mn were determined in up to five successive needle age classes from 54 individual Norway spruce trees [Picea abies (L.) Karst] from nine different sites. The accumulation behaviour was found to be very nonuniform, going from an increase with needle age to a decrease; irregular patterns were also found. The type of accumulation is largely site specific. The increasing behaviour can in most cases be approximated by a simple arithmetic function. All four elements usually show the same accumulation pattern, the similarities being closest between Ca and Mn and least between Ca and Ba. It is postulated that the similarity between the four elements is due to their precipitation and storage as oxalates. The similarity between Ca, Sr and Ba is observed at all concentrations, that with Mn only at concentrations larger than 300 μg/g. Mn at small concentrations (< 50 μg/g) shows a decreasing pattern and no similarity at all with Ca, Sr and Ba, but behaves similar to mobile elements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adamowicz A, Skelly JM, McCormick LH (1993) Temporal changes in Norway spruce foliar nutrients and response to fertilization. In: Huettl R, Mueller N (eds) Forest decline in the Atlantic and Pacific region. Springer, Berlin Heidelberg New York pp 144–161

    Google Scholar 

  • Anonymous (1986) Forschungsbeirat Waldschäden/Luftverunreinigungen, 2. Bericht, KfK Karlsruhe, Germany

  • Bailar JC, Emeleus HJ, Nyholm R, Trotman AF (1973) Comprehensive inorganic chemistry. Pergamon Press, Oxford

    Google Scholar 

  • Cape JN, Freer PH, Paterson IS, Parkinson JA, Wolfenden J (1990) The nutritional status of Picea abies (L.) Karst. across Europe. Trees 4: 211–224

    Google Scholar 

  • Clarkson DT, Hanson JB (1980) The mineral nutrition of higher plants. Annu Rev Plant Physiol 31: 239–298

    Google Scholar 

  • Evers FH (1972) Die jahrweisen Fluktuationen der Nährelementkonzentrationen in Fichtennadeln. Allg Forst-Jagdztg 143: 68–74

    Google Scholar 

  • Ferraz JBS (1985) Standortsbedingungen, Bioelementversorgung und Wuchsleistung von Fichtenbeständen des Südschwarzwaldes. Freiburger Bodenkundl Abh Heft 14, Freiburg

  • Fiedler H, Nebe W, Hoffmann F (1973) Forstliche Pflanzeneerährung und Düngung. Fischer, Jena

    Google Scholar 

  • Fink S (1991) The micromorphological distribution of bound calcium in needles of Norway spruce [Picea abies (L.) Karst.]. New Phytol 119: 33–40

    Google Scholar 

  • Foy CD (1973) Mangenese and plants. In: Manganese. Nad Acad of Sci, Washington, pp 51–75

    Google Scholar 

  • Gmelin L (1960) Handbuch der anorganischen Chemie Sr (Ergänzungsband). VCH, Weinheim

    Google Scholar 

  • Hill J (1980) The remobilization of nutrients from leaves. J Plant Nutr 2: 407–444

    Google Scholar 

  • Horak O, Zvacek L (1987) Mikronährstoffe, toxische Schwermetalle und Aluminium in Waldökosystemen. OEFZS-A-0953, Seibersdorf

  • Hüttl RF, Wisniewski J (1987) Fertilization as a tool to mitigate forest decline associated with nutrient deficiencies. Water Air Soil Pollut 33: 265–276

    Google Scholar 

  • Kazda M, Zvacek L (1989) Aluminium and manganese and their relation to calcium in soil solution and needles in three Norway spruce [Picea abies (L.) Karst.] stands of Upper Austria. Plant Soil 114: 257–267

    Google Scholar 

  • Ke J, Skelly M (1994) Relationship between symptoms expressed by Norway spruce and foliar and soil elements status. Water Air Soil Pollut 74: 289–305

    Google Scholar 

  • Kreutzer K (1972) Die Wirkung des Manganmangels auf die Farbe von Fichtennadeln. Forstwiss Centralbl 91: 80–98

    Google Scholar 

  • Lange OL, Zellner H, Gebel J, Schramel P, Köstner B, Czygan FC (1987) Photosynthetic capacity, chloroplant pigments, and mineral content of the previous year's spruce needles. Oecologia 73: 351–357

    Google Scholar 

  • Marschner H (1986) Mineral nutrition of higher plants. Academic Press, London

    Google Scholar 

  • Nambiar EKS, Five DN (1987) Growth and nutrient retranslocation in needles of radiata pine in relation to nitrogen supply. Ann Bot 66: 147–156

    Google Scholar 

  • Nilsson I (1972) Accumulation of metals in spruce needles and needle litter. Oikos 23: 132–136

    Google Scholar 

  • Rademacher P, Ulrich B, Michaelis W (1992) Bilanzierung der Elementvorräte und Elementflüsse am Standort “Postturm”. In: Michaelis W, Bauch J (eds) Luftverunreinigungen und Waldschäden. GKSS 92/E/100, Geesthacht, Germany, pp 149–186

    Google Scholar 

  • Robarge WP, Pye JM, Bruck RT (1989) Foliar elemental composition of spruce-fir in the southern blue ridge province. Plant Soil 114: 19–34

    Google Scholar 

  • Robertson WG (1982) The solubility concept. In: Nancollas (ed) Biological mineralization and demineralization. Springer, Berlin Heidelberg New York, pp 5–12

    Google Scholar 

  • Santerre A, Mermet JM, Villanueva VR (1990) Comparative timecourse mineral content study between healthy and diseased Picea trees. Water Air Soil Pollut 52: 157–174

    Google Scholar 

  • SAS (1989) User's guide, version 6, pp 1135–1193

  • Tobler L, Bucher J, Furrer V, Schleppi P, Wyttenbach A (1994) Rubidium and cesium in spruce needles: concentrations and biodynamics. Biol Trace Elem Res 43: 195–205

    Google Scholar 

  • Woolhouse HW (1983) Toxicity and tolerance in the responses of plants to metals. Encycl Plant Physiol 12C: 245–300

    Google Scholar 

  • Wyttenbach A, Bajo S, Tobler L (1985) Major and trace element concentrations in needles of Picea abies. Plant Soil 85: 313–325

    Google Scholar 

  • Wyttenbach A, Tobler L, Bajo S (1991a) Silicon concentrations in spruce needles. Z. Pflanzenernaehr Bodenk 154: 253–258

    Google Scholar 

  • Wyttenbach A, Tobler L, Bajo S (1991b) Correlations between soil pH and metal contents in needles of Norway spruce. Water Air Soil Pollut 57/58: 217–226

    Google Scholar 

  • Wyttenbach A, Bajo S, Tobler L, Adam M, Zöttl HW (1992) Elemental concentrations in spruce needles. In: Applications of isotopes and radiation in conservation of the environment. International Atomic Energy Agency, Vienna, Austria, pp 535–546

    Google Scholar 

  • Wyttenbach A, Schleppi P, Bucher J, Furrer V, Tobler L (1994a) The accumulation of the rare earth elements and of scandium in successive needle age classes of Norway spruce. Biol Trace Elem Res 41: 13–29

    Google Scholar 

  • Wyttenbach A, Schleppi P, Tobler L, Bajo S, Bucher J (1995) Concentrations of nutritional and trace elements in needles of Norway spruce [Picea abies (L.) Karst.] as functions of the needle age class. Plant Soil 168: 305–312

    Google Scholar 

  • Ziegler H (1975) Nature of transported substances. In: Zimmermann MH, Milburn JA (eds) Transport in plants. I. Phloem transport. Encyclopedia of plant physiology, new series. Springer, Berlin Heidelberg New York, pp 59–100

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wyttenbach, A., Bajo, S., Bucher, J. et al. The concentration of Ca, Sr, Ba and Mn in successive needle age classes of Norway spruce [Picea abies (L.) Karst.]. Trees 10, 31–39 (1995). https://doi.org/10.1007/BF00197777

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00197777

Key words

Navigation