Skip to main content
Log in

The early holocene hydrosere in a small acid hill-top basin studied using crustacean sedimentary remains

  • Published:
Journal of Paleolimnology Aims and scope Submit manuscript

Abstract

The hydroseral development of a former small lake in Southern Finland was studied by means of subfossil cladoceran remains, diatoms, pollen, plant macrofossils and other sediment data. The diatom analysis shows the lake to have become markedly acid during the Early Holocene. This is reflected in the cladoceran communities in the form of a fall in the proportions of Bosmina longirostris etc. and a reciprocal rise in Bosmina (Eubosmina) longispina, an increase in the proportions of the chydorid species indicative of acidity, and the appearance of certain new morphotypes. The concentrations of both planktonic and littoral species and the numbers of such species increase with acidification. Advancement in the hydroseral succession is reflected in the disappearance of benthic species from the chydorid communities and a pronounced increase in exclusively phytophile species. Sedimentation and the drop in water levels are seen to have led to a spread of helophytes and floating-leaved plants over the water body around 6500–7000 B.P., and a vegetation-filled swamp was created at the site. The zooplankton was practically exterminated, but the concentrations of littoral cladocerans reached their peak at this point. The basin became overgrown completely at the beginning of the Subboreal chronozone (approx. 4600–4800 B.P.), simultaneously with the low-water phase observed in many lakes. It became covered with a Sphagnum stand, and this in turn led to complete destruction of the cladoceran communities. The planktonic/littoral ratio among the Cladocera closely reflected the relation between open water and the macrophyte zone as a function of time. Climatically induced rises and falls in water level are shown to have played a significant role in promoting the advancement of the hydroseral succession.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alhonen, P., 1970a. The palaeolimnology of four lakes in south-western Finland. Ann. Acad. Sci. Fenn. A. III. 39 pp.

  • Alhonen, P., 1970b. On the significance of the planktonic/littoral ratio in the cladoceran stratigraphy of lake sediments. Comm. Biol., Soc. Sci. Fenn. 35: 1–9.

    Google Scholar 

  • Alhonen, P., 1971. The flandrian development of the pond Hyrynlampi, southern Finland, with special reference to the pollen and cladoceran stratigraphy. Acta Bot. Fenn. 95: 1–19.

    Google Scholar 

  • Alhonen, P., 1972. Gallträsket: The geological development and palaeolimnology of a small polluted lake in southern Finland. Comm. Biol., Soc. Sci. Fenn. 57: 1–34.

    Google Scholar 

  • Amoros, C. & G. van Urk, 1989. Palaeoecological analyses of large rivers: Some principles and methods. In: Petts, G. E. (Ed.), Historical Change of Large Alluvial Rivers: Western Europe, Wiley & Sons, Chichester: 143–165.

    Google Scholar 

  • Björck, S. & G. Digerfeldt, 1989. Lake Mullsjön — a key site for understanding the final stage of the Baltic Ice Lake east of Mt. Billingen. Boreas 18: 209–219.

    Google Scholar 

  • Browne, R. A., 1981. Lakes as islands: biogeographic distribution, turnover rates, and composition in the lakes of central New York. J. Biogeogr. 8: 75–83.

    Google Scholar 

  • Carter, J., 1971. Distribution and abundance of planktonic crustacea in ponds near Georgian bay (Ontario, Canada) in relation to hydrography and water chemistry. Arch. Hydrobiol. 68: 204–231.

    Google Scholar 

  • Charles, D. F., 1985. Relationships between surface sediment diatom assemblages and lake water characteristics in Adirondack lakes. Ecology 66: 994–1011.

    Google Scholar 

  • Cholnoky, B. J., 1968. Die Ökologie der Diatomeen. Verlag Cremics Weinheim.

    Google Scholar 

  • Confer, J. L., T. Kaaret & G. E. Likens, 1983. Zooplankton diversity and biomass in recently acidified lakes. Can. J. Fish. aquat. Sci. 40: 36–42.

    Google Scholar 

  • Crisman, T. L. & D. R. Whitehead, 1978. Paleolimnological studies on small New England (USA) ponds. Part II. Cladoceran community responses to trophic oscillations. Pol. Arch. Hydrobiol. 25: 141–146.

    Google Scholar 

  • Davis, R. B. & D. S. Anderson, 1985. Methods of pH calibration of sedimentary diatom remains for reconstructing pH history of lakes. Hydrobiologia 120: 69–87.

    Google Scholar 

  • DeCosta, J. & A. Janicki, 1978. Population dynamics and age structure of Bosmina longirostris in an acid water impoundment. Verh. int. Ver. Limnol. 20: 2479–2483.

    Google Scholar 

  • Deevey, E. S., 1942. Studies on Connecticut lake sediments. III: The biostratonomy of Linsley Pond. Amer. J. Sci. 240: 233–264 and 313–324.

    Google Scholar 

  • Deevey, E. S., 1969. Cladoceran populations of Rogers Lake, Connecticut, during Late- and Postglacial time. Mitt. int. Ver. Limnol. 17: 56–63.

    Google Scholar 

  • Digerfeldt, G., 1988. Reconstruction and regional correlation of Holocene lake-level fluctuations in Lake Bysjön, South Sweden. Boreas 17: 165–182.

    Google Scholar 

  • Donner, J. J., 1971. Towards a stratigraphical division of the Finnish Quaternary. Comm. Phys. Mat., Soc. Sci. Fenn. 41: 281–305.

    Google Scholar 

  • Donner, J. J., P. Alhonen, M. Eronen, H. Jungner & I. Vuorela, 1978. Biostratigraphy and radiocarbon dating of the Holocene lake sediments of Työtjärvi and peats of in the adjoining bog Varrassuo west of Lahti in southern Finland. Ann. bot. fenn. 15: 258–280.

    Google Scholar 

  • Eriksson, M. L. Henrikson, B. I. Nilsson, H. G. Nyman, H. G. Oscarson & J. A. E. Stenson, 1980. Predator-prey relations; important for the biotic changes in acidified lakes. Ambio 9: 248–249.

    Google Scholar 

  • Flössner, D., 1964. Zur Cladocerenfauna des Stechlinsee-Gebietes. II. Ökologische Untersuchungen über die litoralen Arten. Limnologica (Berlin) 2: 35–103.

    Google Scholar 

  • Flössner, D., 1972. Kiemen- und Blattfüsser, Branchiopoda, Fischläuse, Branchiura. Tierwelt Dtl. 60: 1–499.

    Google Scholar 

  • Flössner, D., 1990. Die Geschichte der Cladocerenfauna des Kleinen Barsch-Sees, eines sauren, kalkarmen Moorweihers im mitteleuropäischen Flachland. Limnologica (Berlin) 21: 125–135.

    Google Scholar 

  • Foged, N., 1948. Diatoms in water-courses in Funen 1–6. Dansk Bot. Arkiv 12: 5, 6, 12. Copenhagen.

    Google Scholar 

  • Frey, D. G., 1955. Längsee: a history of meromixis. Mem. Ist. ital. Idrobiol., suppl. 8: 141–164.

    Google Scholar 

  • Frey, D. G., 1958. The late-glacial cladoceran fauna of a small lake. Arch. Hydrobiol. 54: 209–275.

    Google Scholar 

  • Frey, D. G., 1964. Remains of animals in Quaternary lake and bog sediments and their interpretation. Arch. Hydrobiol. Beih. Ergebn. Limnol. 2: 1–114.

    Google Scholar 

  • Frey, D. G., 1980. On the plurality of Chydorus sphaericus (O. F. Müller) (Cladocera, Chydoridae), and designation of a neotype from Sjealso, Denmark. Hydrobiologia 69: 83–123.

    Google Scholar 

  • Frey, D. G., 1986. Cladocera analysis. In: Berglund, B. E. (Ed.), Handbook of Holocene Palaeoecology and Palaeohydrology. John Wiley & Sons, Chichester: 667–692.

    Google Scholar 

  • Frey, D. G., 1988. Littoral and offshore communities of diatoms, cladocerans and dipterous larvae, and their interpretation in paleolimnology. J. Paleolim. 1: 179–191.

    Google Scholar 

  • Fryer, G., 1980. Acidity and species diversity in freshwater crustacean faunas. Freshwat. Biol. 10: 41–45.

    Google Scholar 

  • Gaillard, M.-J., 1985. Postglacial palaeoclimatic changes in Scandinavia and central Europe. A tentative correlation based on studies of lake-level fluctuations. Ecol. Mediterr. 11: 159–175.

    Google Scholar 

  • Goulden, C. E., 1964. The history of the cladoceran fauna of Esthwaite Water (England) and its limnological significance. Arch. Hydrobiol. 60: 1–52.

    Google Scholar 

  • Harmsworth, R. V., 1968. The developmental history of Blelham Tarn (England) as shown by animal microfossils, with special reference to the Cladocera. Ecol. Monogr. 38: 223–241.

    Google Scholar 

  • Havens, K. E. & J. DeCosta, 1987. Freshwater plankton community succession during experimental acidification. Arch. Hydrobiol. 111: 37–65.

    Google Scholar 

  • Haworth, E. Y., K. M. Atkinson & P. S. Newell, 1988. Distribution of certain diatom taxa in Cumbrian waters. In: Round, F. E. (Ed), Proceedings of the 9th International Diatom Symposium. Biopress, Königstein: 17–28.

  • Hellsten, S. & C. Nybom, 1990. Kasvillisuuden muutokset. Teoksessa: Ilmavirta, V. (toim.), Järvien kunnostuksen ja hoidon perusteet. Yliopistopaino, Helsinki: 159–166.

  • Hofmann, W., 1977. Bosmina (Eubosmina) populations of the Grosser Segeberger See (F.R.G.) during late-glacial and postglacial times. Arch. Hydrobiol. 80: 349–359.

    Google Scholar 

  • Hofmann, W., 1978. Bosmina (Eubosmina) populations of Grosser Plöner See and Schöhsee lakes during late-glacial and postglacial times. Pol. Arch. Hydrobiol. 25: 167–176.

    Google Scholar 

  • Hofmann, W., 1983. Stratigraphy of Cladocera and Chironomidae in a core from a shallow North German lake. Hydrobiologia 103: 235–239.

    Google Scholar 

  • Hofmann, W., 1984. Postglacial morphological variation in Bosmina longispina Leydig (Crustacea, Cladocera) from the Grosser Plöner See (North Germany) and its taxonomical implications. Z. zool. Syst. Evolut.-forsch. 22: 294–301.

    Google Scholar 

  • Hofmann, W., 1986. Developmental history of the Grosser Plöner See and the Schöhsee (North Germany): cladoceran analysis, with special reference to eutrophication. Arch. Hydrobiol., Suppl. Bd. 74: 259–287.

    Google Scholar 

  • Hofmann, W., 1987. Cladocera in space and time: Analysis of lake sediments. Hydrobiologia 145: 315–321.

    Google Scholar 

  • Hörnström, E., C. Ekström & M. O. Duraini, 1984. Effects of pH and different levels of aluminium on lake plankton in the Swedish west coast area. Inst. Freshw. Res. Drottningholm 61: 115–127.

    Google Scholar 

  • Hustedt, F., 1937–39. Systematische und ökologische Untersuchungen über die Diatomeen-Flora von Java, Bali und Sumatra auch dem Material der Deutschen Limnologischen Sunda Expedition. Arch. Hydrobiol. Suppl. 15: 131–177, 187–295, 393–506, 639–790. Suppl. 16: 1–155, 274–294.

    Google Scholar 

  • Huttunen, P. & J. Turkia, 1990. Surface Sediment Diatom Assemblages and Lake Acidity. In: Kauppi, P. et al. (Eds.), Acidification in Finland. Springer Verlag, Berlin: 995–1008.

    Google Scholar 

  • Huttunen, P. & J. Turkia, 1991. Diatoms as indicators of alkalinity and TOC in lakes: estimations of optima and tolerances by weighted averaging. In: Proceeding of the 11th International Symposium on living and fossil diatoms. San Francisco 1990 (in press).

  • Hyvärinen, H., 1972. Flandrian regional pollen assemblage zones in eastern Finland. Comm. Biol., Soc. Sci. Fenn. 59: 1–25.

    Google Scholar 

  • Jørgensen, E. G., 1948. Diatom communities in some Danish lakes and ponds. Kong Dansk. Vid. Sel. Biol. Sk. 5: 1–140.

    Google Scholar 

  • Kaule, G., 1976. Begriffsbestimmungen anhand der Moortypen Mitteleuropas. In: Göttlich, K. (Ed.), Moor- und Torfkunde. E. Schweizerbart'sche Verlagsbuchandlung. Stuttgart: 1–21.

    Google Scholar 

  • Keller, W. & J. R. Pitblado, 1984. Crustacean plankton in northeastern Ontario lakes subjected to acid deposition. Wat. Air Soil Pollut. 23: 271–291.

    Google Scholar 

  • Kerfoot, W. C., 1974. Net accumulation rates and the history of cladoceran communities. Ecology 55: 51–61.

    Google Scholar 

  • Kerfoot, W. C., 1977. Implications of copepod predation. Limnol. Oceanogr. 22: 316–325.

    Google Scholar 

  • Korhola, A., 1988. Espoon keidassoiden luonteesta ja kehityksestä-esimerkkinä Nupurilan Kotasuo. (Summary: On the character and development of the raised bogs in Espoo, Southern Finland exemplified by the Kotasuo bog). Suo 39: 73–89.

    Google Scholar 

  • Korhola, A., 1990a. Palaeolimnology and hydroseral development of the Kotasuo bog, Southern Finland, with special reference to the Cladocera. Ann. Acad. Sci. Fennicae A.III. 40 pp.

  • Korhola, A., 1990b. Suomen metsien kehitysvaiheet (Summary: The development of the Finnish forests). Terra 102: 268–274.

    Google Scholar 

  • Korhola, A., 1992. Mire induction, ecosystem dynamics and lateral extension on raised bogs in the southern coastal area of Finland (submitted to Fennia).

  • Korhola, A. & M. Tikkanen, 1991. Holocene development and early extreme acidification in a small hilltop lake in southern Finland. Boreas 20: 333–356.

    Google Scholar 

  • Korhola, A. & M. Tikkanen, 1992. The Late-Glacial — early Post-Glacial transition in the pollen stratigraphy of Lake Pieni Majaslampi, Espoo, southern Finland. University of Joensuu, Publ. Kar. Inst. (in print).

  • Krause-Dellin, D. & C. Steinberg, 1986. Cladoceran remains as indicators of lake acidification. Hydrobiologia 143: 129–134.

    Google Scholar 

  • Lilljeborg, W., 1901. Cladocera Sueciae. Nova Acta Soc. Sci. Upsal., Ser. III, vi: 701 pp.

  • Lotter, A. & M. M. Boucherle, 1984. A late-glacial and post-glacial history of Amsoldingersee and vicinity, Switzerland. Schweiz. Z. Hydrobiol. 46: 192–209.

    Google Scholar 

  • Meriläinen, J., 1967. The diatom flora and the hydrogen-ion concentration of the water. Ann. bot. fenn. 4: 51–58.

    Google Scholar 

  • Meriläiner, J., 1969. The diatoms of the meromictic Lake Valkiajärvi, in the Finnish Lake District. Ann. bot. fenn. 6: 77–104.

    Google Scholar 

  • Mueller, W. P., 1964. The distribution of cladoceran remains in surficial sediments from three northern Indiana lakes. Invest. Indiana Lakes & Streams 6: 1–63.

    Google Scholar 

  • Niemelä, J., 1971. Die quartäre Stratigraphie von Tonablagerungen und der Rückzug des Inlandeises zwischen Helsinki und Hämeenlinna in Südfinnland. Geol. Surv. Finland. Bulletin 253. 79 pp.

  • Nilssen, J. P., 1978. Selective vertebrate and invertebrate predation — some palaeolimnological implications. Pol. Arch. Hydrobiol. 25: 307–320.

    Google Scholar 

  • Nilssen, J. P. & S. Sandøy, 1986. Acidification and crustacean remains: some ecological obstacles. Hydrobiologia 143: 349–354.

    Google Scholar 

  • Nilssen, J. P. & S. Sandøy, 1990. Recent lake acidification and cladoceran dynamics: surface sediment and core analyses from lakes in Norway, Scotland and Sweden. Phil. Trans. r. Soc., Lond. B 327: 299–309.

    Google Scholar 

  • Nilssen, J. P., T. Ostdahl & W. T. W. Potts, 1984. Species replacement in acidified lakes: Physiology, predation or competition? Inst. Freshw. Res. Drottningholm 61: 148–153.

    Google Scholar 

  • Osvald, H., 1937. Myrar ach myrodling. Kooperativa Förbundets Bokförlag. Stockholm. 407 pp.

    Google Scholar 

  • Renberg, I. & T. Hellberg, 1982. The pH history of lakes in Southwestern Sweden, as calculated from the subfossil flora of the sediments. Ambio 11: 30–33.

    Google Scholar 

  • Sandøy, S. & J. P. Nilssen, 1986. A geographical survey of littoral crustacea in Norway and their use in paleolimnology. Hydrobiologia 143: 277–286.

    Google Scholar 

  • Schindler, D. W., K. H. Mills, D. F. Malley, D. L. Findlay, A. Shearer, I. J. Davies, M. A. Turner, G. A. Linsey & R. Cruikshank, 1985. Long-term ecosysten stress: the effects of years of experimental acidification on a small lake. Science 228: 1395–1401.

    Google Scholar 

  • Sprules, W. G., 1975. Midsummer crustacean zooplankton communities in acid-stressed lakes. J. Fish. Res. Bd Can. 32: 389–395.

    Google Scholar 

  • Stansfield, J., B. Moss & K. Irvine, 1989. The loss of submerged plants with eutrophication III. Potential role of organochlorine pesticides: a palaeoecological study. Freshwat. Biol. 22: 109–134.

    Google Scholar 

  • Tikkanen, M., 1989. Geomorphology of the Vantaanjoki drainage basin, southern Finland. Fennia 167: 19–72.

    Google Scholar 

  • Tolonen, K. & T. Jaakkola, 1983. History of lake acidification and air pollution studied on sediments in South Finland. Ann. bot. fenn. 20: 57–78.

    Google Scholar 

  • Uimonen-Simola, P. & K. Tolonen, 1987. Effects of recent acidification on Cladocera in small clear-water lakes studied by means of sedimentary remains. Hydrobiologia 145: 343–351.

    Google Scholar 

  • Walker, D., 1970. Direction and rate in some British post-glacial hydroseres. In: Walker, D. & G. West (Eds.), Studies in the vegetational history of the British Isles. Cambridge University Press: 117–139.

  • Whiteside, M. C., 1970. Danish chydorid Cladocera: modern ecology and core studies. Ecol. Monogr. 40: 79–118.

    Google Scholar 

  • Whiteside, M. C. & M. R. Swindoll, 1988. Guidelines and limitations to cladoceran palaeoecological interpretations. Palaeogeogr. Palaeoclim. Palaeoecol. 62: 405–412.

    Google Scholar 

  • Whiteside, M. C., J. B. Williams & C. P. White, 1978. Seasonal abundance and pattern of chydorid, Cladocera in mud and vegetative habitats. Ecology 59: 1177–1188.

    Google Scholar 

  • Wong, C. K., 1981. Cyclomorphosis in Bosmina and copepod predation. Can. J. Zool. 59: 2049–2052.

    Google Scholar 

  • Wright, R., T. Dale, E. Gjessing, G. Hendrey, A. Henriksen, M. Johanssen & I. Muniz, 1976. Impact of acid precipitation of freshwater ecosystems in Norway. Wat. Air Soil Pollut. 6: 483–499.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Korhola, A. The early holocene hydrosere in a small acid hill-top basin studied using crustacean sedimentary remains. J Paleolimnol 7, 1–22 (1992). https://doi.org/10.1007/BF00197028

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00197028

Key words

Navigation