Skip to main content
Log in

The impact of salinization on benthic macro-crustacean assemblages in a Mediterranean shallow lake

  • Published:
Aquatic Ecology Aims and scope Submit manuscript

Abstract

The shallow Vrana Lake in Dalmatia, Croatia, is directly connected to the Adriatic Sea by the Prosika canal (0.85 km), constructed in the eighteenth century. The aim of this research was to examine the impacts of salinization on long-term changes in littoral macro-crustacean (Malacostraca) populations and assemblages in Vrana Lake and connecting canals. Benthic macroinvertebrates were sampled at seven sites during the period 2011–2020 (14 months) using a hand net (25 × 25 cm, 500 µm). During the study period, saltwater intrusions (strongest in 2012) through the Prosika Canal and site V4 caused increased salinization, resulting in a shift from normal oligohaline (0.5–5 PSU) to mesohaline (5–18 PSU) salinity. Out of a total of 18 macro-crustacean taxa identified, five widespread species—amphipods Echinogammarus stocki and Gammarus aequicauda, isopods Lekanesphaera hookeri and Proasellus coxalis, and decapod Palaemon antennarius constituted 91.6% of collected specimens (26,986). The first three brackish/marine species were significantly positively correlated with the average salinity 12 and 24 months before sampling. They disappeared or had very low abundance during the second low salinity phase (< 1–2 PSU), when freshwater/oligohaline P. coxalis and P. antennarius were the dominant macro-crustaceans. Two  years of low salinity were needed for a strong population decline or disappearance of three brackish/marine species. Salinization is a major stressor in the Vrana Lake basin, and measures for its active control are urgently needed. The use of tested macro-crustacean metrics is recommended for future ecological monitoring as it could provide fast information about the effects of water management on aquatic biodiversity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The dataset is available from the corresponding author on reasonable request.

References

  • Argano R (1979) Isopodi (Crustacea Isopoda). In: Ruffo S (ed) Guide per il riconoscimento delle specie animali delle acque interne Italiane, AQ/1/43. Consiglio Nazionale delle Richerche, Verona, Italy, pp 1–63

  • Attrill MJ, Power M (2000) Effects on invertebrate populations of drought-induced changes in estuarine water quality. Mar Ecol Prog Ser 203:133–143

    Article  CAS  Google Scholar 

  • Attrill MJ, Rundle SD, Thomas MR (1996) The influence of drought-induced low freshwater flow on an upper-estuarine macroinvertebrate community. Water Res 30:261–268

    Article  CAS  Google Scholar 

  • Bellan Santini D, Karaman G, Krapp-Schickel G, et al (1982) The Amphipoda of the Mediterranean. Part 1. Gammaridea (Acanthonotozomatidae to Gammaridae). In: Ruffo S (ed) The Amphipoda of the Mediterranean. Part 1. Mémoires de l’Institut océanograophique 13, Monaco, pp 1–364

  • Bellan Santini D, Karaman G, Krapp-Schickel G, et al (1993) The Amphipoda of the Mediterranean. Part 3. Gammaridea (Melphidippidae to Talitridae), Ingolfiellidea, Caprellidea. In: Ruffo S (ed) The Amphipoda of the Mediterranean. Part 3. Mémoires de l’Institut océanograophique 13, Monaco, pp 577–814

  • Boets P, Lock K, Goethals PLM (2011) Shifts in the gammarid (Amphipoda) fauna of brackish polder waters in Flanders (Belgium). J Crustac Biol 31:270–277. https://doi.org/10.1651/10-3357.1

    Article  Google Scholar 

  • Boix D, Sala J, Gascón S et al (2007) Comparative biodiversity of crustaceans and aquatic insects from various water body types in coastal Mediterranean wetlands. Hydrobiologia 584:347–359. https://doi.org/10.1007/s10750-007-0579-8

    Article  Google Scholar 

  • Cañedo Argüelles IM (2020) A review of recent advances and future challenges in freshwater salinization. Limnetica 39:185–211. https://doi.org/10.23818/limn.39.13

    Article  Google Scholar 

  • Castaneda E, Drake P (2008) Spatiotemporal distribution of Lekanesphaera species in relation to estuarine gradients within a temperate European estuary (SW Spain) with regulated freshwater inflow. Ciencias Mar 34:125–141

  • Casagranda C, Dridi MS, Boudouresque CF (2006) Abundance, population structure and production of macro-invertebrate shredders in a Mediterranean brackish lagoon, Lake Ichkeul, Tunisia. Estuar Coast Shelf Sci 66:437–446. https://doi.org/10.1016/j.ecss.2005.10.005

    Article  Google Scholar 

  • Caspers H (1959) Vorschläge einer Brackwassernomenklatur (‘“The venice system”’). Int Rev Ges Hydrobiol 44:312–315

    Article  Google Scholar 

  • Charmantier G, Charmantier Daures M (1994) Ontogeny of osmoregulation and salinity tolerance in the isopod crustacean Sphaeroma serratum. Mar Ecol Prog Ser 114:93–102. https://doi.org/10.3354/meps114093

    Article  Google Scholar 

  • Cunillera-Montcusí D, Beklioğlu M, Cañedo-Argüelles M et al (2022) Freshwater salinisation: a research agenda for a saltier world. Trends Ecol Evol 37:440–453. https://doi.org/10.1016/j.tree.2021.12.005

    Article  CAS  PubMed  Google Scholar 

  • Dalla Via G-J (1987a) Salinity response in brackish water populations of the freshwater shrimp Palaemonetes antennarius - I. Oxygen Consumption Comp Biochem Physiol 87A:471–478

    Google Scholar 

  • Dalla Via G-J (1987b) Effects of salinity and temperature on oxygen consumption in a freshwater population of Palaemonetes antennarius (Crustacea, Decapoda). Comp Biochem Physiol 88A:299–305

    Google Scholar 

  • De Cáceres M, Legendre P (2009) Associations between species and groups of sites: indices and statistical inference. Ecology 90:3566–3574. https://doi.org/10.1890/08-1823.1

    Article  PubMed  Google Scholar 

  • Delgado L, Guerao G, Ribera C (2009) The Gammaridea (Amphipoda) fauna in a Mediterranean coastal lagoon: Considerations on population structure and reproductive biology. Crustaceana 82:191–218. https://doi.org/10.1163/156854008X397194

    Article  Google Scholar 

  • Delgado L, Guerao G, Ribera C (2011) Effects of different salinities on juvenile growth of Gammarus aequicauda (malacostraca: Amphipoda). Int J Zool 2011:1–6. https://doi.org/10.1155/2011/248790

    Article  Google Scholar 

  • Dufrêne M, Legendre P (1997) Species assemblages and indicator species: the need for a flexible asymmetrical approach. Ecol Monogr 67:345–366

    Google Scholar 

  • Dugan HA, Bartlett SL, Burke SM et al (2017) Salting our freshwater lakes. Proc Natl Acad Sci USA 114:4453–4458. https://doi.org/10.6073/pasta/455d73d4cb43514e503826211eba4e99

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frier JO (1976) Oxygen consumption and osmoregulation in the isopods Sphaeroma hookeri leach and S. rugicauda leach. Ophelia 15:193–203. https://doi.org/10.1080/00785326.1976.10425458

    Article  Google Scholar 

  • Fritz F (1984) Postanak i starost Vranskog jezera kod Biograda na moru [Origin and age of Vrana Lake near Biograd na moru]. Geološki Vijesnik 37:231–243 (in Croatian)

    Google Scholar 

  • Froglia C (1978) Decapodi (Crustacea Decapoda). In: Ruffo S (ed) Guide per il riconoscimento delle specie animali delle acque interne Italiane, AQ/1/9. Consiglio Nazionale delle Richerche, Verona, Italy, pp 1–39

  • Giorgi F (2006) Climate change hot-spots. Geophys Res Lett 33:1–4. https://doi.org/10.1029/2006GL025734

    Article  Google Scholar 

  • Giorgi F, Lionello P (2008) Climate change projections for the Mediterranean region. Glob Planet Change 63:90–104. https://doi.org/10.1016/j.gloplacha.2007.09.005

    Article  Google Scholar 

  • Gottstein Matočec S, Kerovec M (2002) Atyaephyra desmaresti and Palaemonetes antennarius (Crustacea: Decapoda, Caridea) in the delta of the Neretva river (Croatia). Biol - Sect Zool 57:181–189

    Google Scholar 

  • Gottstein Matočec S, Kuzman A, Kerovec M (2006) Life history traits of the grass shrimp Palaemonetes antennarius (Decapoda, Palaemonidae) in the delta of the Neretva River, Croatia. Limnologica 36:42–53. https://doi.org/10.1016/j.limno.2005.10.002

    Article  Google Scholar 

  • Harrell JF (2023) Hmisc: Harrell Miscellaneous. R package version 5.1–1

  • Henry J-P, Magniez G (1983) Introduction pratique à la systématique des organismes des eaux continentales françaises - 4. Crustacés Isopodes (principalement Asellotes). Bull Mens La Société Linnéenne Lyon 52:319–357. https://doi.org/10.3406/linly.1983.10613

    Article  Google Scholar 

  • Herbert ER, Boon P, Burgin AJ et al (2015) A global perspective on wetland salinization: ecological consequences of a growing threat to freshwater wetlands. Ecosphere 6:1–43. https://doi.org/10.1890/ES14-00534.1

    Article  Google Scholar 

  • IPCC (2014) Climate change 2014: synthesis report. contribution of working groups I, II and III to the fifth assessment report of the intergovernmental panel on climate change. IPCC, Geneva, Switzerland

  • Jacobs BJM (1987) A taxonomic revision of the European, Mediterranean and NW. African species generally placed in Sphaeroma Bosc, 1802 (Isopoda: Flabellifera: Sphaeromatidae). Zool Verh Leiden 238:1–71

    Google Scholar 

  • Jeppesen E, Brucet S, Naselli-Flores L et al (2015) Ecological impacts of global warming and water abstraction on lakes and reservoirs due to changes in water level and related changes in salinity. Hydrobiologia 750:201–227. https://doi.org/10.1007/s10750-014-2169-x

    Article  Google Scholar 

  • Jiménez Cisneros B, Oki T, Arnell N, et al (2014) Freshwater resources. In: Field CB, Barros VR, Dokken DJ, et al. (eds) Climate change 2014: impacts, adaptation, and vulnerability. Part A: global and sectoral aspects. contribution of working group ii to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, pp 229–269

  • Katalinić A, Denona MĆ, Rubinić J, Morell M (2012) Vrana Lake in Dalmatia—Water, surroundings and protection. In: proc. of international scientific conference on water, climate and environment "Balwois 2012"

  • Kefford BJ, Marchant R, Schäfer RB et al (2011) The definition of species richness used by species sensitivity distributions approximates observed effects of salinity on stream macroinvertebrates. Environ Pollut 159:302–310. https://doi.org/10.1016/j.envpol.2010.08.025

    Article  CAS  PubMed  Google Scholar 

  • Kemp JL, Ballot A, Nilssen JP et al (2020) Distribution, identification and range expansion of the common Asellidae in Northern Europe, featuring the first record of Proasellus meridianus in the Nordic countries. Fauna nor 40:93–108. https://doi.org/10.5324/fn.v40i0.3353

    Article  Google Scholar 

  • Kevrekidis T, Kourakos G, Boubonari T (2009) Life history, reproduction, growth, population dynamics and production of Gammarus aequicauda (Crustacea: Amphipoda) at extremely low salinities in a Mediterranean lagoon. Int Rev Hydrobiol 94:308–325. https://doi.org/10.1002/iroh.200811097

    Article  CAS  Google Scholar 

  • Koprnická M (2013) Phylogeography and dispersal routes of the Proasellus coxalis s.l. (Crustacea: Isopoda). Dissertation, Univerzita Karlova v Praze

  • Kouwenberg J, Pinkster S (1985) Population dynamics of three brackish water Isopods species (Crustacea) in the lagoon system of Bages-Sigean (France). II. Life cycles, sexual activity and fecundity. Vie Milieu 35:79–92

    Google Scholar 

  • Le TDH, Schreiner VC, Kattwinkel M, Schäfer RB (2021) Invertebrate turnover along gradients of anthropogenic salinisation in rivers of two German regions. Sci Total Environ 753:1–10. https://doi.org/10.1016/j.scitotenv.2020.141986

    Article  CAS  Google Scholar 

  • Legendre P, Legendre L (2012) Numerical ecology. Elsevier, Amsterdam

    Google Scholar 

  • Little S, Wood PJ, Elliott M (2017) Quantifying salinity-induced changes on estuarine benthic fauna: the potential implications of climate change. Estuar Coast Shelf Sci 198:610–625. https://doi.org/10.1016/j.ecss.2016.07.020

    Article  Google Scholar 

  • Martínez-Megías C, Rico A (2022) Biodiversity impacts by multiple anthropogenic stressors in Mediterranean coastal wetlands. Sci Total Environ 818:1–13. https://doi.org/10.1016/j.scitotenv.2021.151712

    Article  CAS  Google Scholar 

  • Mastrocicco M (2021) Studies on water resources salinization along the Italian coast: 30 years of work. Acque Sotter - Ital J Groundw 10:7–13. https://doi.org/10.7343/as-2021-537

    Article  Google Scholar 

  • Obolewski K, Glińska-Lewczuk K, Szymańska M et al (2018) Patterns of salinity regime in coastal lakes based on structure of benthic invertebrates. PLoS ONE 13:1–19. https://doi.org/10.1371/journal.pone.0207825

    Article  CAS  Google Scholar 

  • Pinkster S (1993) A revision of the genus Echinogammarus Stebbing, 1899 with some notes on related genera (Crustacea, Amphipoda). Mem Del Mus Di Stor Nat 10:1–185

    Google Scholar 

  • Piscart C, Moreteau JC, Beisel JN (2005) Biodiversity and structure of macroinvertebrate communities along a small permanent salinity gradient (Meurthe River, France). Hydrobiologia 551:227–236. https://doi.org/10.1007/s10531-004-4783-9

    Article  Google Scholar 

  • Piscart C, Usseglio-Polatera P, Moreteau JC, Beisel JN (2006) The role of salinity in the selection of biological traits of freshwater invertebrates. Arch Fur Hydrobiol 166:185–198. https://doi.org/10.1127/0003-9136/2006/0166-0185

    Article  CAS  Google Scholar 

  • Poizat G, Rosecchi E, Chauvelon P et al (2004) Long-term fish and macro-crustacean community variation in a Mediterranean lagoon. Estuar Coast Shelf Sci 59:615–624. https://doi.org/10.1016/j.ecss.2003.11.007

    Article  Google Scholar 

  • Poore GCB (2001) Families and genera of Isopoda Anthuridea. In: Kensley B, Brusca RC (eds) Isopod systematics and evolution. Balkema, Rotterdam, pp 63–173

    Google Scholar 

  • R Core Team, 2023. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/

  • Roberts DW (2023) labdsv: Ordination and Multivariate Analysis for Ecology. R package version 2.1–0, https://CRAN.R-project.org/package=labdsv

  • Rubinić, J., 2014. Vodni režim Vranskog jezera u Dalmaciji i klimatski utjecaji [Water regime of the Vransko Lake in Dalmatia and climate impacts]. Dissertation, University of Rijeka (in Croatian).

  • Rubinić J, Katalinić A (2014) Water regime of Vrana Lake in Dalmatia (Croatia): changes, risks and problems. Hydrol Sci J 59:1908–1924. https://doi.org/10.1080/02626667.2014.946417

    Article  CAS  Google Scholar 

  • Šiljeg A, Lozić S, Šiljeg S (2015) A comparison of interpolation methods on the basis of data obtained from a bathymetric survey of Lake Vrana, Croatia. Hydrol Earth Syst Sci 19:3653–3666. https://doi.org/10.5194/hess-19-3653-2015

    Article  Google Scholar 

  • Stroj, A., 2012. Vransko jezero—Hidrogeološka istraživanja [Vrana Lake—hydrogeological study]. Report (in Croatian).

  • Szöcs E, Coring E, Bäthe J, Schäfer RB (2014) Effects of anthropogenic salinization on biological traits and community composition of stream macroinvertebrates. Sci Total Environ 468–469:943–949. https://doi.org/10.1016/j.scitotenv.2013.08.058

    Article  CAS  PubMed  Google Scholar 

  • Tzomos T, Koukouras A (2015) Redescription of Palaemon antennarius H. Milne Edwards, 1837 and Palaemon migratorius (Heller, 1862) (Crustacea, Decapoda, Palaemonidae) and description of two new species of the genus from the circum-Mediterranean area. Zootaxa 3905:27–51. https://doi.org/10.11646/zootaxa.3905.1.2

    Article  PubMed  Google Scholar 

  • Vidal N, Yu J, Gutierrez MF et al (2021) Salinity shapes food webs of lakes in semiarid climate zones: a stable isotope approach. Inl Waters 11:476–491. https://doi.org/10.1080/20442041.2020.1859290

    Article  CAS  Google Scholar 

  • Vilibić I, Šepić J, Pasarić M, Orlić M (2017) The Adriatic Sea: a long-standing laboratory for sea level studies. Pure Appl Geophys 174:3765–3811. https://doi.org/10.1007/s00024-017-1625-8

    Article  Google Scholar 

  • Wagner RJ, Boulger Jr. RW, Oblinger CJ, Smith BA (2006) In: Guidelines and standard procedures for continuous water-quality monitors: station operation, record computation, and data reporting. U.S. Geological survey techniques and methods 1–D3, Washington, DC.

  • Williams WD (2001) Anthropogenic salinisation of inland waters. Hydrobiologia 466:329–337

    Article  Google Scholar 

  • Wittmann KJ, Ariani AP, Daneliya M (2016) The Mysidae (Crustacea: Peracarida: Mysida) in fresh and oligohaline waters of the Mediterranean. Taxonomy, biogeography, and bioinvasion. Zootaxa 4142:1–70

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank all those that helped during the field and laboratory work, or with the logistic: Maja Ćuže Denona, Norma Fressel, Antonio Karaga, Petar Crnčan, Nikolina Knežević, Tomislav Kralj, Andreja Lucić, Ivana Pusić, Antonio Svorenji, Ivana Zrinščak. This research was funded by the Natural Park “Vransko jezero” within four separate expert projects for mollusca fauna (lead by JL, author of this study), crustacean fauna (KŽ) and two projects for littoral macroinvertebrates assemblages (KŽ).

Funding

Nature Park Vransko jezero

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation and data collection were performed by Krešimir Žganec and Jasna Lajtner, and data analysis by Krešimir Žganec and C. Brannon Andersen. The first draft of the manuscript was written by Krešimir Žganec and C. Brannon Andersen, while all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Krešimir Žganec.

Ethics declarations

Competing interests

The authors have no competing interests to declare that are relevant to the content of this article.

Additional information

Handling Editor: S. S. S. Sarma.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (XLSX 10 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Žganec, K., Andersen, C.B. & Lajtner, J. The impact of salinization on benthic macro-crustacean assemblages in a Mediterranean shallow lake. Aquat Ecol (2024). https://doi.org/10.1007/s10452-024-10099-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10452-024-10099-1

Keywords

Navigation