Skip to main content
Log in

Measurements of transmembrane pH differences of low extents in bacterial chromatophores

A study with the fluorescent probe 9-amino, 6-chloro, 2-methoxyacridine

  • Published:
European Biophysics Journal Aims and scope Submit manuscript

Abstract

In chromatophores from photosynthetic bacteria the interaction of the fluorescent monoamine, 9-amino, 6-chloro, 2-methoxyacridine (ACMA), with the membrane is evaluated and described by an S-shaped adsorption isotherm. This phenomenon is hysteretic, as indicated by the difference between the adsorption and desorption branches of the binding isotherm. Maximal saturation of adsorption is reached at one ACMA per one to four lipid molecules, indicating that the probe binds in its neutral form. Adsorption of the probe on the membrane causes a large quenching of its fluorescence, which is explaind as being due to hypochromic effects following stacking and aggregation in a medium of low dielectric constant. A further quenching of fluorescence is brought about by imposing artificially induced transmembrane ΔpH's. This latter phenomenon titrates in at increasing ΔpH values and approaches saturation when ΔpH is ≧2. The dependence of ΔpH on the observed quenching of fluorescence is predicted by considering a model based on the equilibrium distribution of the amine between two phases at different pH's, in which adsorption of the probe on the membrane is used to evaluate its free concentration in the inner and outer compartments of the chromatophore vesicle. It is proposed that the equation thus obtained should be used to measure ΔpH from the quenching of ACMA fluorescence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ΔpH:

transmembrane pH difference between the inner and outer compartments

Q:

quenching of fluorescence

BChl:

Bacteriochlorophyll

ACMA:

9-amino-6-chloro-2-methoxyacridine

9AA:

9-aminoacridine

Tricine:

N-tris-(hydroxymethyl)methylglycine

MES:

2-morpholinoethanesulfonic acid

FCCP:

carbonylcyanide-p-trifluoro-methoxy-phenylhydrazone

CCCP:

carbonylcyanide-m-chloro-phenylhydrazone

References

  • Albert A (1966) The acridines — Their preparation, physical, chemical and biological properties and uses. Edward Arnold, London

    Google Scholar 

  • Aveyard R, Hayden DA (1973) An introduction to the principles of surface chemistry. Cambridge University Press, London

    Google Scholar 

  • Azzone GF, Pietrobon D, Zoratti M (1984) Determination of the proton electrochemical gradient across biological membranes. Curr Top Bioenerg 13:2–77

    Google Scholar 

  • Baccarini Melandri A, Melandri BA (1971) Partial resolution of the photophosphorylation system of Rhodopseudomonas capsulata. Methods Enzymol 123:556–561

    Google Scholar 

  • Baccarini Melandri A, Casadio R, Melandri BA (1981) Electron transport, proton translocation and ATP synthesis in bacterial chromatophores. Curr Top Bioenerg 12:197–258

    Google Scholar 

  • Bevington PR (1969) Data reduction and error analysis for the physical sciences. McGraw-Hill, New York

    Google Scholar 

  • Brandt L, Witholt B (1967) Fluorescence measurements. Methods Enzymol 9:776–856

    Google Scholar 

  • Capomacchia AC, Schulman SG (1975) Electronic absorption and fluorescence spectrophotometry of quinacrine. Anal Chim Acta 77:79–85

    Google Scholar 

  • Casadio R (1988) The oligomycin-sensitive Ca-ATPase of chromatophores from photosynthetic bacteria is not coupled to Δ µ H + generation. In: Ion pumps: structure, function and regulation. AR Liss, New York pp 201–206

    Google Scholar 

  • Casadio R, Melandri BA (1977) The behaviour of 9-aminoacridine as an indicator of transmembrane pH difference in liposomes of natural bacterial phospholipids. J Bioenerg Biomem 9:17–29

    Google Scholar 

  • Casadio R, Melandri BA (1984) On the regulation of the ATPase activity in chromatophores of Rhodopseudomonas sphaeroides. In: Papa S, Altendorf K, Ernester L, Packer L (eds) H+-ATPase (ATPsynthase): structure, function, biogenesis. The F0F1 complex of coupling membranes. ICSU Press, Adriatica Editrice, Bari pp 411–420

    Google Scholar 

  • Casadio R, Melandri BA (1985) Calibration of the response of 9-aminoacridine fluorescence to transmembrane pH differences in bacterial chromatophores. Arch Biochem Biophys 238:219–228

    Google Scholar 

  • Casadio R, Venturoli G, Di Gioia A, Castellani P, Leopardi L, Melandri BA (1984) Phospholipid-enriched bacterial chromatophores. A system suited to investigate the ubiquinone-mediated interactions of protein complexes in photosynthetic oxidoreduction processes. J Biol Chem 259:9149–9157

    Google Scholar 

  • Casadio R, Venturoli G, Melandri BA (1988) Evaluation of the electrical capacitance in biological membranes at different phospholipid to protein ratios. A study in photosynthetic bacterial chromatophores based on electrochromic effects. Eur Biophys J 16:243–253

    Google Scholar 

  • Clayton RK (1963) Towards the isolation of a photochemical reaction center in Rhodopseudomonas sphaeroides. Biochim Biophys Acta 75:312–323

    Google Scholar 

  • Deamer DW, Prince RC, Crofts AR (1972) The response of fluorescent amines to pH gradients across liposome membranes. Biochim Biophys Acta 274:323–335

    Google Scholar 

  • Dufour JP, Goffeau A, Tsong TY (1982) Active proton uptake in lipid vesicles reconstituted with the purified yeast plasma membrane ATPase. Fluorescence quenching of 9-amino 6-chloro 2-methoxyacridine. J Biol Chem 257:9365–9371

    Google Scholar 

  • Fiolet JW, Bakker EP, Van Dam K (1974) The fluorescence properties of acridines in the presence of chloroplasts or lyposomes. On the quantitative relationship between the fluorescence quenching and the transmembrane proton gradient. Biochim Biophys Acta 368:432–445

    Google Scholar 

  • Flewelling RF, Hubbel WJ (1986) Hydrophobic ion interactions with membranes thermodynamic analysis of tetraphenylphosphonium binding to vesicles. Biophys J 49:531–540

    Google Scholar 

  • Flewelling RF, Hubbel WL (1986) The membrane dipole potential in a total membrane potential model. Applications to hydrophobic ion interactions with membranes. Biophys J 49:541–552

    Google Scholar 

  • Friedl P, Friedl C, Schairer HU (1979) The ATP synthetase of Escherichia coli K12: purification of the enzyme and reconstitution of energy transducing activities. Eur J Biochem 100:175–180

    Google Scholar 

  • Gangola P, Joshi NB, Pant DD (1981) Excimer emission in 9-aminoacridine hydrochloride. Chem Phys Lett 80:418–421

    Google Scholar 

  • Grzesiek S, Dencher NA (1988) The ΔpH-probe 9-aminoacridine: response time, binding behaviour and dimerization at the membrane. Biochim Biophys Acta 938:411–424

    Google Scholar 

  • Grzesiek S, Otto H, Dencher NA (1989) ΔpH-induced fluorescence quenching of 9-aminoacridine in lipid vesicles is due to excimer formation at the membrane. Biophys J 55:1101–1109

    Google Scholar 

  • Haraux F, de Kouchkovsky Y (1980) Measurements of chloroplast internal protons with 9-aminoacridine. Probe binding, dark proton gradient and salt effects. Biochim Biophys Acta 592:153–168

    Google Scholar 

  • Hill TL (1946) Statistical mechanics of multimolecular adsorption. Localized and mobile adsorption and desorption. J Chem Phys 14:441–453

    Google Scholar 

  • Hope AB, Matthews DB (1985) Adsorption of amines to thylakoid surfaces and estimation of ΔpH. Aust J Plant Physiol12:9–19

    Google Scholar 

  • Huang CS, Kopacz SJ, Lee CP (1983) Mechanistic differences in the energy linked fluorescence decreases of 9-aminoacridine dyes associated with bovine heart submitochondrial membranes. Biochim Biophys Acta 722:107–115

    Google Scholar 

  • Kamlet MJ,1 Abbond JL, Taft RW (1977) The solvatochromic comparison method 6. The π* scale of solvent polarities. J Am Chem Soc 99:6027–6038

    Google Scholar 

  • Kipling JJ (1965) Adsorption from solutions of non-electrolytes. Academic Press, London New York

    Google Scholar 

  • Kouchkovsky Y de, Haraux F, Sigalat C (1984) A microchemiosmotic interpretation of energy-dependent processes in biomembranes based on the photosynthetic behaviour of thylakoids. Bioelectrochem Bioenerg 13:143–162

    Google Scholar 

  • Kraayenhof R, Fiolet JWT (1974) On the interaction of 9-amino substituted acridine probes with energy conserving membranes. In: Ernester L, Estabrook RW Slater EC (eds) Dynamics of energy transducing membranes. Elsevier, Amsterdam, pp 355–363

    Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurements with the Folin phenol reagent. J Biol Chem 193:265–275

    CAS  PubMed  Google Scholar 

  • Malpartida F, Serrano R (1981) Proton translocation catalyzed by the purified yeast plasma membrane ATPase reconstituted in liposomes. FEBS Lett 131:351–355

    Google Scholar 

  • Marini Bettolo Marconi H, Van Swol F (1989) A model of hysteresis in narrow pores. Europhys Lett 8:531–535

    Google Scholar 

  • Marty A, Viallet P (1982) Essais d'interprétation des déplacements des spectres électroniques de diverses amino-9 acridines en solution par leurs interactions avec des solvants aprotiques. J Photochem 20:213–227

    Google Scholar 

  • Marty A, Viallet P (1985) Application de la fluorimétrie de phase a l'étude des interactions soluté-solvent de quatre amino-9 acridines substitutées. J Photochem 28:71–85

    Google Scholar 

  • Marty A, Bourdeaux M, Dell'Amico M, Viallet P (1986) 9-amino-2-methoxy-6-chloroacridinemonocation fluorescence analysis by phase-modulation fluorometry. Eur Biophys J 13:251–257

    Google Scholar 

  • Melandri BA, Mehlhorn RJ, Packer L (1984) Light-induced proton gradients and internal volumes in chromatophores of Rhodopseudomonas sphaeroides. Arch Biochem Biophys 235:97–105

    Google Scholar 

  • Pick U (1976) The pH gradient across chloroplast thylakoid membranes and its significance for photophosphorylation. PhD Dissertation, Weizmann Institute of Science, Rehovot, Israel

    Google Scholar 

  • Rydstrom J (1979) Energy-linked nicotinamide nucleotide transhydrogenase properties of proton translocating and ATP-driven transhydrogenase reconstituted from synthetic phospholipids and purified transhydrogenase from beef heart mitochondria. J Biol Chem 254:8611–8619

    Google Scholar 

  • Rottenberg H (1979) The measurement of membrane potential and ΔpH in cells, organelles and vesicles. Methods Enzymol 45:547–569

    Google Scholar 

  • Rottenberg H, Grunwald T, Avron M (1972) Determination of ΔpH in chloroplasts. 1 Distribution of [14C] Methylamine. Eur J Biochem 1972:54–63

    Google Scholar 

  • Saphon S, Jackson JB, Lerbs W, Witt HT (1975) The functional unit of electrical events and phosphorylation in chromatophores from Rhodopseudomonas sphaeroides. Biochim Biophys Acta 408:58–66

    Google Scholar 

  • Schuldiner S, Rottenberg H, Avron M (1972) Determination of ΔpH in chloroplasts. 2 Fluorescent amines as a probe for the determination of ΔpH in chloroplasts. Eur J Biochem 1972:64–70

    Google Scholar 

  • Searle GFW, Barber J (1978) The involvement of the electrical double layer in the quenching of 9-aminoacridine fluorescence by negatively charged surface. Biochim Biophys Acta 502:309–320

    Google Scholar 

  • Strotmann H, Lohse D (1988) Determination of the H+ transport-coupled reversible chloroplast ATPase reaction by equilibrium studies. FEBS Lett 229:308–312

    Google Scholar 

  • Torres-Pereira JMG, Wong Fong Sang HW, Theuvenet APR, Kraayenhof R (1984) Electric surface charge dynamics of chloroplasts thylakoid membranes. Temperature dependence of electrokinetic potential and aminoacridine interaction. Biochim Biophys Acta 767:295–303

    Google Scholar 

  • Vu Van T, Heinze T, Buchholz J, Rumberg B (1987) Quantitative relationship between 9-aminoacridine fluorescence quenching and internal pH in broken chloroplasts. In: Biggins J (ed) Progress in photosynthesis researches vol III. Nijhoff, Dordrecht, pp 189–192

    Google Scholar 

  • Wille B (1988) Thylakoid volume, proton translocation and buffering capacity as measured with spin-label techniques. Biochim Biopbys Acta 936:513–530

    Google Scholar 

  • William H (1986) Numerical recipes. Cambridge University Press, Cambridge

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Casadio, R. Measurements of transmembrane pH differences of low extents in bacterial chromatophores. Eur Biophys J 19, 189–201 (1991). https://doi.org/10.1007/BF00196345

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00196345

Key words

Navigation