Skip to main content

Electrophysiological Characterization of Microbial Rhodopsin Transport Properties: Electrometric and ΔpH Measurements Using Planar Lipid Bilayer, Collodion Film, and Fluorescent Probe Approaches

  • Protocol
  • First Online:
Rhodopsin

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2501))

Abstract

Electrophysiological approaches to the study of the activity of retinal-containing protein bacteriorhodopsin (bR) or other proteins of this family are based usually on measurements of electrical current through a planar bilayer lipid membrane (BLM) with proteoliposomes attached to the BLM surface at one side of the membrane. Here, we describe the measurements of the pumping activity of bR and channelrhodopsin 2 (ChR2) with special attention to the study of voltage dependence of the light-induced currents. Strong voltage dependence of ChR2 suggests light-triggered ion channel activity of ChR2. We also describe electrophysiological measurements with the help of collodion film instead of BLM for the measurements of fast stages of a rhodopsin photocycle as well as the estimation of the activity of proteoliposomes without a macro membrane using fluorescent probes such as oxonol VI or 9-aminoacridine.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gushchin I, Gordeliy V (2018) Microbial rhodopsins. In: Subcellular biochemistry, pp 19–56

    Google Scholar 

  2. Ernst OP, Lodowski DT, Elstner M et al (2014) Microbial and animal rhodopsins: structures, functions, and molecular mechanisms. Chem Rev 114:126–163

    Article  CAS  Google Scholar 

  3. Grote M, Engelhard M, Hegemann P (2014) Of ion pumps, sensors and channels—perspectives on microbial rhodopsins between science and history. Biochim Biophys Acta Bioenerg 1837:533–545

    Article  CAS  Google Scholar 

  4. Drachev LA, Jasaitis AA, Kaulen AD et al (1974) Direct measurement of electric current generation by cytochrome oxidase, H+-ATPase and bacteriorhodopsin. Nature 249:321–324

    Article  CAS  Google Scholar 

  5. Bamberg E, Apell HJ, Dencher NA et al (1979) Photocurrents generated by bacteriorhodopsin on planar bilayer membranes. Biophys Struct Mech 5:277–292

    Article  CAS  Google Scholar 

  6. Drachev LA, Frolov VN, Kaulen AD et al (1976) Reconstitution of biological molecular generators of electric current. Bacteriorhodopsin. J Biol Chem 251:7059–7065

    Article  CAS  Google Scholar 

  7. Herrmann TR, Rayfield GW (1978) The electrical response to light of bacteriorhodopsin in planar membranes. Biophys J 21:111–125

    Article  CAS  Google Scholar 

  8. Bamberg E, Dencher NA, Fahr A et al (1981) Transmembranous incorporation of photoelectrically active bacteriorhodopsin in planar lipid bilayers. Proc Natl Acad Sci 78:7502–7506

    Article  CAS  Google Scholar 

  9. Feldbauer K, Zimmermann D, Pintschovius V et al (2009) Channelrhodopsin-2 is a leaky proton pump. Proc Natl Acad Sci 106:12317–12322

    Article  CAS  Google Scholar 

  10. Sineshchekov O, Govorunova EG, Wang J et al (2013) Intramolecular proton transfer in channelrhodopsins. Biophys J 104:807–817

    Article  CAS  Google Scholar 

  11. Drachev LA, Kaulen AD, Khitrina LV et al (2005) Fast stages of photoelectric processes in biological membranes. Eur J Biochem 117:461–470

    Article  Google Scholar 

  12. Drachev LA, Kalamkarov GR, Kaulen AD et al (1981) Fast stages of photoelectric processes in biological membranes. II Visual rhodopsin. Eur J Biochem 117:471–481

    Article  CAS  Google Scholar 

  13. Apell H-J, Bersch B (1987) Oxonol VI as an optical indicator for membrane potentials in lipid vesicles. Biochim Biophys Acta Biomembr 903:480–494

    Article  CAS  Google Scholar 

  14. Bennett AB, Spanswick RM (1983) Optical measurements of ΔpH and Δψ in corn root membrne vesicles: kinetic analysis of Cl− effects on a proton-translocating ATPase. J Membr Biol 71:95–107

    Article  CAS  Google Scholar 

  15. Antonenko YN, Denisov SS, Silachev DN et al (2016) A long-linker conjugate of fluorescein and triphenylphosphonium as mitochondria-targeted uncoupler and fluorescent neuro- and nephroprotector. Biochim Biophys Acta Gen Subj 1860:2463–2473

    Article  CAS  Google Scholar 

  16. Sone N, Yoshida M, Hirata H et al (1977) Adenosine triphosphate synthesis by electrochemical proton gradient in vesicles reconstituted from purified adenosine triphosphatase and phospholipids of thermophilic bacterium. J Biol Chem 252:2956–2960

    Article  CAS  Google Scholar 

  17. Nichols JW, Hill MW, Bangham AD et al (1980) Measurement of net proton-hydroxyl permeability of large unilamellar liposomes with the fluorescent pH probe, 9-aminoacridine. Biochim Biophys Acta Biomembr 596:393–403

    Article  CAS  Google Scholar 

  18. Volkov O, Kovalev K, Polovinkin V et al (2017) Structural insights into ion conduction by channelrhodopsin 2. Science 358:eaan8862

    Article  Google Scholar 

  19. Dencher NA, Heyn MP (1982) Preparation and properties of monomeric bacteriorhodopsin. In: Methods in enzymology, pp 5–10

    Google Scholar 

  20. Nagel G, Szellas T, Huhn W et al (2003) Channelrhodopsin-2, a directly light-gated cation-selective membrane channel. Proc Natl Acad Sci 100:13940–13945

    Article  CAS  Google Scholar 

  21. Gushchin I, Chervakov P, Kuzmichev P et al (2013) Structural insights into the proton pumping by unusual proteorhodopsin from nonmarine bacteria. Proc Natl Acad Sci 110:12631–12636

    Article  CAS  Google Scholar 

  22. Kaulen AD (2000) Electrogenic processes and protein conformational changes accompanying the bacteriorhodopsin photocycle. Biochim Biophys Acta Bioenerg 1460:204–219

    Article  CAS  Google Scholar 

  23. Kalaidzidis IV, Kaulen AD, Radionov AN et al (2001) Photoelectrochemical cycle of bacteriorhodopsin. Biochemistry (Mosc) 66:1220–1233

    Article  CAS  Google Scholar 

  24. Siletsky SA, Mamedov MD, Lukashev EP et al (2016) Electrogenic steps of light-driven proton transport in ESR, a retinal protein from Exiguobacterium sibiricum. Biochim Biophys Acta Bioenerg 1857:1741–1750

    Article  CAS  Google Scholar 

  25. Siletsky SA, Mamedov MD, Lukashev EP et al (2019) Elimination of proton donor strongly affects directionality and efficiency of proton transport in ESR, a light-driven proton pump from Exiguobacterium sibiricum. Biochim Biophys Acta Bioenerg 1860:1–11

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to Oleksandr Volkov for producing channelrhodopsin-2 and Christian Baeken for providing us with purple membranes.

The research was supported by the Ministry of Science and Higher Education of the Russian Federation (agreement # 075-00337-20-03, project FSMG -2020-0003). Measurements of electrogenic properties were supported by RFBR grants 19-04-00238 (to TIR) and 18-04-00503a (to SAS).

This work was supported by Russian Science Foundation (RSF) Project 21-64-00018.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuri N. Antonenko .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Rokitskaya, T.I., Maliar, N.L., Siletsky, S.A., Gordeliy, V., Antonenko, Y.N. (2022). Electrophysiological Characterization of Microbial Rhodopsin Transport Properties: Electrometric and ΔpH Measurements Using Planar Lipid Bilayer, Collodion Film, and Fluorescent Probe Approaches. In: Gordeliy, V. (eds) Rhodopsin. Methods in Molecular Biology, vol 2501. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2329-9_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2329-9_12

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2328-2

  • Online ISBN: 978-1-0716-2329-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics